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(U) The passive sonar problem is defined ani the traditional approach to a
snlution using matched filters is presented. Maximization of the directivity
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factor for known signals with static, nonadaptive filters emerges as the prime

o goal of traditional processing. Care is then taken to properly introduce the
; tl cross-spectral density matrix which plays a crucial role in adaptive processing.

Ly

;‘ (1) A realization of adaptive noise cancellation through the usqrof signal~
y free references is achieved with the development of a “Correlo-riltre",
g " Unfortunatedly adaptive noise cancellation leads to degradation when a supposedly
y f known wavefront deviates from an expected shape. Robustness and the need for

\E a processor which does not require prior knowledge of the wavefront is then
~ A1scussed.
() A novel‘method of identifying completely unknown wavefronts is proposed.
. Js5ing the eigenvalues of the cross=spectral density matrix allows the number of
\J: sources to he detarmined. The wavefront shapes are then shown be scrambled within
if- the aigenvectors by an unknown unitary matrix. Additional information needed to
.;: select a specific unitary matrix is interuced by modeling the sources as a
::. conerent sum of “conditional plane waves“.. While the existence of a solution
B« i3 posel, no specific solution is obtainediibecause of the large computational 2ffort
required. ‘\
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Preface

Dr. Mermoz has worked in the area of acoustic signal processing since the
cnd of World War 11 As the first director of the French naval laboratory
Gronpe Etudes Recherches Détection Sousmarines, he guided the develop-
ment of French acoustic signal processing from the ashes of war to one of
the premier laboratories in existence today. Now retived, this paper repre-
sents a desire of Dr. Mermoz to share with us his knowledge of the past,
nnderstanding of the present, and vision of the future in passive sonar sig-
nal processing. Hence this report is divided into three main chapters (2-4)
convcerned with each evolutionary stage in our understanding of acoustic
sienal processing.

ln chapter 2 he defines the passive sonar problem and presents the
traditional approach to a solulion using matched filters. Maximization
ol the divectivity factor for known signals with static, nonadaptive filters
cnierges as the prime goal of traditional processing. He then takes some
care to properly introduce the cross-spectral density matrix which plays a
criteial role in adaptive processing discussed in the remainder of this report.

In chapter 3 he turns his attention to contemporary methods for the
adaptive cancelation of noise through the use of signal-free references. e
achicves a realization of noise cancelation with the development of a “Corre-
lo Iiltre™. Unfortunately adaptive noise cancelation works too well, leading
to degradation when a supposedly known wavefront deviates from what
ix cxpected. He then proceeds to discuss robustness and the need for a
processor which does not require prior knowledge of the wavefront.

T his we are lead into chapter 4 in which Dr. Mermoz puts forth a novel
method of identifving completely unknown wavefronts, Using the ecigenval-
nes of the eross-spectral density matrix allows the number of sources fo
o determined. The wavefront shapes are then shown be scrambled within
the cigenvedtorns by an unknown unitary matris. Additional information
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needed to select a specific unitary matrix is infroduced by modeling the
sources as a coherent sum of “conditional plane waves”. While the exis-

. - . . .« . . .
tercerof a solution is posed, no specific solution is obtained because of the

tdrge: computational effort required. This then is his vision of one future
area of profitable research in sonar array processing.

Solne mention must be made of the nonstandard notation used to dif-
ferentiate between various types of vectors and matrices. Row vectors ac-
cented with a left arrow, e.g. R, ave used throughont this paper to denote
complex filter coeflicients. Column vectors accented with a right arrow,
c.g. S, are used to denote a complex wavefront. Matched filters tuned to
a particular wavefront are represented by the complex conjugate transpose
of the wavefront, ST. Matrices are accented with a double arrow, C.

Cross-spectral density matrices (CSDM) of different types are differ-
entiated using subscripts. Throughout sections 2.1-3.1 C represents noise
alone, while in the remainder of the paper C represents a transformed naoise
alone C'SDM. The ('SDM of perfect sources is represented by C, while the
raw data matrix is denoted by C,.

The Naval Research Laboratory contracted Dr. Mermoz to write this
report in August 1983, The finished report was delivered to NRL on
20 June 1986. Since that time the paper has been revised on a part-time
hasis by the editor.

Any technical correspondence concerning this paper should be addressed
to the author at: H82 Chemin de la Calade, R3140 SIX-FOURS, France.

Peter Mignerey,
Editor
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Chapter 1

INTRODUCTION

This paper deals with technigues for processing sonar array data in order to
obtain information about the spatial distribution of the acoustic sources.
The goal is to present a method for identifying sonrces whose frequency
spectrum and wavefront at the array are unknown. Consideration of this
problem is the next logical step along the evolutionary path that spatial
processing has taken over the last few decades. This path is characterized
by a decreasing level of confidence in any kind of prior knowledge about the
ellects of the propagation medinm, which has proven to be more and more
clusive and unpredictable as detection ranges and array size have increased.

In order to provide a proper introduction for this problem, it is uselul to
retrace the evolutionary path with a modern point of view so that the new
concepts can he progressively infroduced. As a result, this introduction is
divided into three sections, which correspond roughly to the three major
steps in the evolution of spatial signal processing.

The concept of directivity index has dominated (if not choked) spatial
processing for decades. In fact, the utility of directivity index as a descriptor
requires very stringent conditions to be satisfied: hoth the signal wavefront
and the spatial structure of the noise field must he known. The signal
wavelront is nsually assimed o be a plane wave, which fmplies that the
propagation medii s homogenecous. The notse field s asually assamed
fo be “ommnidirectional.” which again timplhes a homogeneous medium and,
i addition. completely determines the noise correlation as a function of
the spatial separation hetween array sensors. NMedinm bhehavior is therefore

frozen in the notion of directivity index: the only option left for spatial
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2 INTRODUCTION

processing is to try to nuprove the signal to noise ratio, which depends on
the number of sensors and on their geometry.

Directivity index was a satisfactory deseriptor for the high-frequency
short-range sonarvs of an earlier generation. Many senior scientists, however,
can remember a tite when the sonar equation—in dectbels  was allowed
an additional term. AL for “anomaly.” Because the medium was ivozen and
allowed tfor no abuormalities. the concept had to evolve,

Circa 1960 11 hecame obvious that a deseription of the noise fickd as om-
nidirectional was no longer satisfactory. Morcover, it became apparent that
the description of the spatial structure as {rozen was to be questioned. The
new picture of a thme-varving spatial structure called for the developient
of time-varying processors. This led to the introduction of adaptive spatial
processing and adaptive beamforming, in which any thought of using prior
knowledge about the noise field is dismissed. Instead the description of the
noise field reflected in the time-dependent correlation matrix changes with
time. Here the notion of correlation matrix appears explicitly, whereas if
was only nmplicit 1 the concept of directivity index. Although the corre-
lation matrix plays an important role in adaptive beamforming, that role
remains lmited compared to what it will be in the approach presented in
chapter 1.

Althongh the notion of a predetermined, static noise field had heen re-
laxed, the signal wavefront was presumed still to be a plane wave whose
direction of propagation was known. The resulting beamforimer operated
to look simultaneously in all possible directions with preformed heams. In
chapter 3 we will generalize the problem shghtly by assuming that, al-
thongh the signal wavefront is known, it is not necessarily a plane wave.
“Beamforning™ then hecomes adaptive processing matched to a given sig-
nal wavelront,

Adaptive heamforming was doubtless a significant step forward in that
it eliminated all prior assumptions about the structure of the noise field.
[t< cost lies in the need for a significant amount of real time computing
power and the technigues for its implementation are still developing.

It was predictables and it has already been shiown, that adaptive heam-
forming  even in the generalized form deseribed in chapter 3 would he
fimited by the only assnmption it retained: namely. that the signal wave-
front is known, At first alance, any attempt to eliminate this last assump-

tion would seem hopeless. Neverthelesso a deeper analvsis of the stracture

. j-.‘(. J";",--',!.'):‘,‘!".D"f\-’ 'w.\'}.' ‘ '\,‘-".‘-J:-‘_'-’.\'\*\,\J’-'\ >y ‘?\}’ Jl'\’r"yl'.‘-‘-'\ .
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ol the correlation watrx, shows thato although some prior anfornation s
vegired, the amonnt is less than that contained ina complete deseription of
the stienal wavetfront. Moreover, assumption of a too detaled prior deserip:
don ob the stenal wavetront can eastly prove to he mcompatible with ihe
mcastred corre ation matrix. The temptation alwavs exists, in that case,
tor blwe the oo ompatibibity on inacenracies i the estingded correlation
mattisn. Tlee this s not the souree of the problem is <neeested hath by
car nereasine ability to acqguire accurate data and by thie developaent of
cetinied estiieaton aethods, We shall cotmment only Lol on the copi
ot~ iteratire devated 1o estintation methods: essentially we shall accept
andd tost these methods as they exist. Having done <o we can consider
atteipting fo cope with the complexity of the medimmn and its effects i
order 1o determine hot't the signal wavetront and its spectral density with
Favee arrav~. Phisas still adaptive processing, hut not simply heamforming,
aneb 1t veguires a hiuge amount of real time computing power.

What we are attempting to do, thenois to present a method for the
“rdentifreation” (e determination of the spectral density and the signal
wiavelronts ol aie or nore sotrees using a minimum of prior assmmptions,
Fhe very notions of stenal and notge will be shightly ditferent from what
ey svere i hanters 2 and 3

\Wo shiant oot ddeal with the probleny of sonree localization nor shall we
doad with o cpecthe model of the medinm, Instead we shall indicate in
chapter 1ehat can be done in approaching the problem of source localiza-
tfion (e, derorigining the coordinates of the source). T previous papers,
o=t ol whieh are i Freneh, we miixed the problems of identification and
lcalizativn av o neaally done in more superficial treatments, What we
Jiall shoes bere - that localization, and only localization, is ill.\v]ml'h!nlt‘
from sonee sort of deseription or model of the medinm. Separating the
fwa probloar- sl shied clarity on both. While the problem of wavefront
ilentification can be a matter strictly for array processing specialists, the
problen o focalization follows as an additional study in which those who
miodel the medinn shonld participate.

Nospecotio aleonthine will he proposed:we <hall merely present the <et
ot equationcwinelo vzt he attacked inorder to ohtain o practical solition.
Ciiven the complexite of the sugoested approach. no operational solution s

for b especred o the mean Dutures Thas stady <honkd he cansidered par

ctoa Lo tev cpproach whielr niay well requine new advanees i diaital
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- computing power before any real-time implementation becomes possible.
L . . . . . .
3 Nevertheless. some experimental investigation iz possible today and those
> o . . Ry . .
particular aspects of the theory which require carly verilication will he
o indicated. Indeed the kind of “weak™ assumptions which remain in chapter
o b are, in fact, the last ramparts in spatial processing.  If these or some
s P . . .
Ny similar assumptions were totally unacceptable for a given problem. the
My . . . ' . . . .
o implication would be that no sensor combination would be more effective
. . . . . .
v than a single sensor. Such a catastrophic case seems quite unlikely, however,
: hecause arrayvs have thus far proven to be useful tools which do provide some
~ cain, although generally not the gain predicted by current theories,
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2 Chapter 2

-:: DIRECTIVITY AND
2 SOURCE IDENTIFICATION

o
>
2.1
Aich has heen written about dirvectivity, vet the concept actually contains
N two different notions. The more familiar notion of angular resolving power,
i whicly is related to heamwidth, has significance for both transmitting and
receiving arravs, The scientific literature dealing with the minimization of
- beamwidth and the reduction of sidelobe levels 1s extensive. For receiving
. arvayvs it s well known that. by using nonlinear combinations of sensor out-
) puts, one can obtain narrower inain beams and hence higher resolution than
, with linear techniques, at least for strong signals. Such nonlinear processing
l technigues are ineflicient and unstable and can lead to erroneous results for
weak signals in a noisy environment., The second notion contained in the
o concept of directivity is that of directivity factor or, in decibels, directivity
et index. which is a measure of the spatial array gain (i.e. the increase in the
signal-to-noise ratio) for signals, weak or strong. in the presence of noise.
L Because onr inteution is to treat the detection and identification of weak
b signals in backgronnd noise. we are concerned here only with the second
. notion of directivity and with linear combinations ol sensors. Thus, we
e, deal with processors i which each sensor ontput is passed through a linecar
v fitter. Fach filter can be described in teris either of its impulse response
. or of its complex frequeney response, which form a Fourier pair. The term
;i-. “combination” will he used in this paper fo refer to the sim of the outputs
- 5
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:E;b': of these linear filters.

»":,.: In a nonadaptive heamformer. such as one having classical preformed
. beams. the filters do not change with time: in adaptive beamlormers the
" filter characteristics are continually adjusted in accordance with the infor
'\,: mation obtained from estimates of the evolving noise correlation matris.
- The permanence of the filters in classical beamforming is a direct conse
N quence of the very rigid assumptions made about the structure of the sipnal
& and noise, These assumptions are:
~f-f-’, 1. The signal is uncorrelated with the noise and is carried by a single
.::,'.'_:'. plane wave coming from a direction specified by o which stands for
ey the two angles, bearing and tilt.

o
o 2. The noise is omnidirectional (i.e. spherically isotropic). This means
s that for cach frequency the noise field in the vicinity of the array
-.:; is composed of a superposition of uncorrefated plane waves which
N can be described as carrying equal power {rom all directions or as

- being uniformly distributed over all solid angles dw. Tmplicit in hoth
H assumptions is the notion that the medium is isotropic.
' .f
ks
A

D) FFor the signal and noise fields described above. the bhehavior of the arrav
y a0 i1s completely described by its plane wave response function. For a given
e sensor combination the plane wave response is the complex function NDw. f)
s which gives the amplitude and phase at the beamformer output, when the
"ﬁ input is a unit amplitude plane wave having frequency f and coming fron

the direction w. The output phase is measured relative to one of the sensors
- or relative to some reference point in the array.

ﬁ_‘:: For a nonrandom signal coming from the direction wqy, the system re
) :-: sponse at frequency fis s(f)D(wq, f). where s{ f) is the complex amplitude
. 5 of the Fourier component at frequeney [ measured at the signal origin, For

). this signal the power speetral density at the outpuat is fs( [V D (wo. 1
"'-" where the vertical hars denofe the modudus of a comples quantity, so that

-:: IDI2 - DD with the star denoting complex conjugation.

' -"' If the signal coming from the wy direction is stochastic with power spec

;t: tral density J( f). then the power spectral density at the heamiormer output
Q.n
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o i< dof i wen f 117 The fraction of the isotropic noise in the solid angle éw
- . | g
P contributes a term M YV D(w. HHilIFéw to the output spectral density, where
b f1. the power spectral density of the noise per unit solid angle, s inde-
preitdent of . Because the noise contributions from different solid angles
o are asstmed to he uncorrelated, the total noise power
b .
' WA | Dl )]
. JQ
- i st the s of the contributions from the solid angles 2. For the isotropie
-~ A . .
. noise field under consideration @ - o,

- 2.3

o For the <tochastie signal coming from direction wy. the signal-to-noise ratio

) at the oatput of the heamformer can he expressed as a function of frequency
as

< 10 Do I

¥ h(f Jo Dt I 6
which s a real, positive quantity 1)1'()p()1‘1imm| to the traditional directivity
[irctor.

Dresign of a spatial processor then requires maximizing

- !1)‘“‘05‘”'3

I‘“ ”)(_w._f”:’ lgq.

b the chioiee of sensor geometry, of sensor combination, or of both. Often
; the sensor geomerry is fixed and only the choice of sensor combination is
L available. In that case the functional form of D is known and the solution
oy Lecomes straightforward, We shall develop the solution in a manner which
will make it possible to introdiuce concepts of importance in later sections
- of this paper.
N The sealar mnction Diw. f) deseribes {wo stages of processing:
- I T he first stage of processing is performed by the arvay itself inde-
'_" pendent of the sensor combination. For a wunil amphtudc plane wave
having frequeney [oand coming from the direction @ the Fourier
e transformed sensor ontputs provide o set of N complex nmmbers,
-.'
i
I.‘.
e
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L= .. . . . .
! where N is the number of sensors. This set of numbers is the transla
".; . . . . .
- tion through the array of the incoming plane wave and can be consid-
- : \ 2
o ered to be a vector in an V-dimensional complex space. For any given
\ . . .
& array geometry this vector is easily constructed. Let /i, (w. f) be the
" . . .
‘:.- Fourier-transformed output of the n'"* sensor evaluated at frequency
A f and let H(w. [) be the vector whose N components ave the /.
-:‘,
3
‘) 2. The second stage of processing is performed by the combination
that is. by summing the outputs of the NV linear filters. These filters
* . . o .
~ are descrihed by their frequency responses. r,( f), which are the com-
I N
Y ponents of a vector R{[).
AN
X ‘k\' g . . . . . .
KV I'he beamformer output resulting from these two stages of processing is
%Y : 2
3 v
wo f) = N ho(w. fira(f). (2.1
\4:. n :1
Understanding that all quantities are functions of frequency, we shall hence
forth suppress the frequency variable in order to simplify the notation.
‘ If R is taken to be a row vector and H(u.') a column vector, then (2.1)
S becomes the scalar product
o D(w) - RH(w). (2.2)
oy . : . . .
b The column vector H(w) is a particular case of what we shall call a “source
D) vector™ corresponding to a remote source transmitting white noise which
-\.$ arrives at the array from the direction w. The corresponding normalized
.: vector is F(w) ~— H(w)/|H(w)] where [Hiw)| = [Ht(u:)H(w)[”:' and the
‘o superscripl findicates the conjugate transpose. We shall refer to the vector
L) ] . L. .
24 F as the “wavefront vector,” although it is not the physical wavefront (here
. a plane wave) but its translation through the array of sensors. [n the
.h . . . . . . . . . .
S concept of directivity, it is implicitly assumed that this wavefront vector is
. . . .
Y perfectly known for plane waves arriving at the given array geometiy,
..::- The filter response r,, must he chosen to maximize the ratio
L
.c ( ) ;I)(.L,'(, .
5 FALRY ) (2.3
:h*t Jo ID(w)?
L)
ey Optimization of plwy) usnally leads to a main beam pomnted in the @,
o direction. I, however, additional constraints are placed on the solution.
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such as equality of side-lobe levels or a predetermined rate of decrease in
side lobe level then the maximum response of the array may not be in
the direction of the source. In other words. optimization of the directivity
factor does not necessarily meet the requirements suggested by a desire to
improve angnlar resolution. Still, optimization of the directivity factor does
provide the maximumn signal-to-noise ratio under the given assumptions.
This is one illustration of the previously mentioned duality in the concept
of divectivity.

2.4

With D(w) given by (2.1). the integral in the denominator of p(wg) can be
written as

NN
D) D (w) b = ./” L L Do), (wYr,re | dw, (2.1)

n=1m=1

Y

which can he rewritten as

NN
r o - i R
V/”i/)(""‘):\_ bu L L |:r”,.m ./” /ln(u-‘)/)m(u))(gw . (2'))

n=1m-—1}

th i

The quantity h(w)h) (w). which is the element in the n'™ row and m"!
column of the clementary matrix H(w)HT(u:). is the cross-spectral density
of the field coming from the directions w. This can he seen by recalling the

seneral rmle:

If a sonree with spectral density o passes through two filters
h, and h,, in parallel, then the cross-spectral density of the two
ol puts is g, o ah, b (see appendix A).

n the particnlar case wunder consideration & 1. because H corresponds
to a unit amplitude plane wave. Thus, the cross-speetral density matrix
for o point-like sonree in the far field is a dyvad of the form H(w)H'P(w).
In order to anderstand the approach in the later sections of this paper. it
is essential to observe that the rank of this matrix s I, even thongh its
order is V. Indeed. every veetor X that is orthogonal to Hin an (N 1)

dimensional subspace iz transformed by HH1 to a null veetor., Obyvionsly,

Z
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Ty
"—J — — - T —
S with H and X as column vectors, we have H'X - 0 which implies that
A
o~ SR ] it s
e (HH]L )X = 0. The only nonzero eigenvalue of HH]L is the scalar HTH and
1 B
') the corresponding eigenvector is H itself.
BN ™)
ne
ooy
o
r..
. : 2-5
¥ "'
Looking now at the integral on the right hand side of (2.5). we write
-hd'
) . o 0
S Cooom = ho(w)H, (w)bw. (2.6)
N Ja
u'h: . t] . . . .
A This is clearly the (n.m)™ element in the sum of an infinite munber ol
‘: elementary cross-spectral density matrices linked to uncorrelated point-like
! ';: sources. Therefore, this sum is the (n,m)™ elemeni of the cross-spectral
§
59! density matrix C for the normalized omnidirectional noise. Although eacl
) .
oy < (‘lementan contribution to matrix C is a rank-one matrix. the rank of
L
a2 C is not unity. Neither is it less than the order N, because the rank
. increases every {ime an elementary contribution is added, and there is an
-
'\-"{'\ infinity of such contributions (this will be hetter lllustmte(l in chapter 1).
ol ‘ i
AT As a result. the rank and order of C are N and C is invertible (i.e. C
LNl . .
ot exists). Something similar would happen if the sensor outputs consisted
ﬂ

of independent noise with the same spectral density. The cross-spectral

Ll

density matrix would again be of rank N. but it would have a simpler
form. being proportional to a unit matrix (which is not true for matrix C

"

- ).
2, .
o It is obvious from (2.6) that ¢,,, = ¢;,,. The matrix C is Hermitian,
. ’ — - .. .
." C = Ct, and as a result has real, positive eigenvalies, as does every cross-
e . . . . . . ~—1 s
" spectral density matrix. The same is true for the inverse matrix C . The

right haud side of (2.5) can now be written as

-
poka L

] f RCR - \_‘ L rn",,,'.rnn
.v" no Lo |
b 5Al
-rl- . . . . . . « .V'
o which is the quadratic form for the row vector R through the matrix C.
--J-. Ty . .. . . . . . . .
RGN I'his real. positive scalar is the spectral density of the omnidirectional noise
“" . . . .
o at the output of the combination of sensors,
A
X
)
R
5
A
o
b
A
“.. A
@
N5
)

‘b " .N' -r' R - o .,-
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Looking now to the numerator of p(wy) in (2.3).
E [D{wo )| = D(wo) D (wo)

we can use (2.]).

e

N
I)(""‘O) o }_: hn(""‘())rrn

n-1

]

’

-
.
s

"~ to write
N N

- - = ) . -
2 Diwo)D (wo) = D Y rury, hulwo)h,, (wo).
"_‘ n=1m=1
~ The quantity h,(wo)h,, (wo) is the element in the n'® row and m™ column
LS )

] . . = C . . . , .
e of the matrix HoHy related to the incoming plane wave signal. The rank of

this matrix is unity. The only nonzero eigenvalue is the scalar HIH(, and

- the associated eigenvector is Hy. As we shall see later. Hy is the source
¢ ‘ "

( vector of a remote sotrce transinitting a white noise from the direcltion wq.

We have
'.."" ,I)(u}n))? = f{I:I()Ijl(‘i).l'il- — lh.H”l? (27)
which is sinltancously the quadratic form of the vector R through the

! matrix ﬁ.,HZ and the square of the modulus of the scalar product RH,.

Maxinnzing p(we) in (1.3) then consists of choosing the filters R so as

- to maximize o

'~ IRH,|*

N plwo) = == % (2.8)
RCR

e This is exactly the same problem that is encountered in determining the

spatial matched filter for a nonrandom signal in the presence of noise, whose
complex spectral components at the sensor outputs are Hy, with a cross-

:F‘r l’l

spectral density matrix given by C.

The sohition is well known and can be obtained in several ways. One of

-

i

them is briefly outlined here. In order to present it in classical form, let us
change notation by replacing the row matrix R with the row matrix XT.
The eolumn matrix X then represents the filters v, through the convention

2 A

1 d
-

%

_‘\.\‘-\‘-‘\"\. 2 BN ¥ AA PR NN AT '-y\'-'\u-- . . O\ O\ - F O A
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x, = r;. In the new notation (2.8) becomes:
XA,

p(u}o) = _“T . (2())
X'CX

Matrix C, being Hermitian and invertible. can be written in factored form

as C = MTM with M an invertible matrix. Hence:

— -— - —>1 — —
¢ =M (M) _n () (2.10)
Defining the column vectors Y and Py by:
Y = MX,
— — _l —
P, = (Mf) Ho: (2.11)
equation (2.9) hecomes:
2
(YTPO
P(wo):i?‘- (2.12)
Y'Yy ~ ~
Now the Schwartz inequality states that for any Y and Py :
‘\?"130 < (?W) (f’if%) . (2.13)

Fquality occurs when Y and Pg are parallel:
Y = oP,. (2.11)

with « an arbitrary frequency dependent complex scalar. From (2.12) and
(2.13), the maximization of p(wy) is reached through (2.14). This maximum
in conjunction with (2.10) and (2.11) allow X and R to be written as:

X = (lé_lﬁo,

R - a'ﬁlé“’; (2.15)

which is a spatial generalization of the matehed filter theorem. The max-
imimum value of p(wy) is then,

inaa - PIPO
< H'C "H,. (2.16)

- ] L - ” L : - ¥ i N -




' .
! ﬂ DIRECTIVITY 13
T
! , .
- Fhe filters B and X detined by (2.15) are multiplied by an arbitrary
“ N . . . - .

oy filter factor which does not alter p,,., (provided the filter has no null in
) . . . . . . \

its frequencey response across the useful bandwidth). If some of the filters
\ are noncausal it s possible 1o make them so by finding a time delay (or a
o . . . . . .

o phase flter in sertes: expl27 f7]). which translates all the impulse responses
¢ to causality. Morcover, it is also possible to get an unaltered signal spectral

N density on the output of the filter combination. Since the ultimate goal is
S to analyze the spectral density, an unaltered signal is generally regnired.

One has to chooze [IRGHy! - 1, which is equivalent to

-

o, 9 -

! D(wos I 1. (2.17)
Sy hecause of (2.7). ('()nS(‘qll(’llfl\'.

+ SR )
[ . T s -1

o ol - (H]C H0>

»

‘J‘ o / .

Wi E | [ fPmane ( 2.1 8)
‘o A little more restrictive condition D(wg, f) = 1, for all p, generally makes
17

u the tnore familiar divectivity functions all-pass hlimc for the signal. Any-

wayv the linal expression for X and R after (2.15) and (2.18) is, within an
b ; arhitrary phase factor:
2> L
A - C H,
A X , 1?
ey
,,! H,C H,
, yhe
= BH,C
B 0 .
- R - T (2.19)
-- -~ "l
, - H,C H,
b
l
e 2.7
D »,
oo
In this section we are concerned with directivity and omnidirectional noise,
! f_‘-} Vector His the array respouse fo a unit amplitnde plane wave (the geometry
Y
‘ LS of the array), while C denotes a normalized cross-spectral density matrig
: Hnked to H by (2.6), 1t iz noteworthy that all relations from (2.9 to (2.19)

e , . : . : .. ]
o are valid for any veetor Hy and any cross-speetral density matrix C. For

! . . ’ ¢ . ' . s .

: - hoth o nonvandom impulse signal. §(1) “cavried by the wavefront™ Ho. and
: .. a <tochastic white sipnal with a unit spectral density also careied by Hg, the
N
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P aptitnal set of Hlters s given by (2.19) when the noise spatial strocture i
8"y | . e |
2 represented by the nonnormalized matrix C. It happens that we have also
5. partly treated the processing problem for any spatial signal represented by
v a given vector ina noise structure represented by a given matvix, This wild
. he used in chapter 3.
}‘ Coming back to directivity, we now have an output with the unaitered
- sipnal spectral density d mixed with the fraction of the ommnidirectional nose
~ . .
4 which is let through hy the combination R or X. According to section 2.3,
this noise spectral density is:
-, g .
_. hif Iy dw HRCR'
. Ja
Y T
» XX,
o o PO
b~ - HhH,C "Hy)
:: b Pinax
..’
- q S . . \
N I'he factor HyC  Hy is unimportant because it is considered to he perfectly
‘ known in the directivity concept. Since the signal and noise are uncore
o lated. the total spectral density on the output is d i b, p... The crro
\_ i the speetral analvsis of the signal is b/p,,., and may be negligible for
o a darge value of po,, e a lavge array gain. Doing better requires sonme
- knowledge of bin order to “identify™ d. the only parameter which remains
R nnidentified in the directivity concept,
fl
a
e‘
L2 208
N
The real problem is to get an estimate for b Herein avises the notion
: of “signal-free reference.”™  The possibility ol building a combination of
< ~ensors from which only the noise would appear isoat first sight, velativel:
X - S v
: casv. 1 we choose a set of filters represented by a row veetar Vosnel that
] . N .
. VH, 0. then the signal with a wavelront Hao will ot appear at the
@ ontput. The omuoidirectional noise will appear at the heamtonner ot
Ay . . - ..<._'. . . .
:‘ with spectral density D V(.aV]) which can he measured and Tram o el
- hocan be determined . In principle the choiee of ' Voas arbitracy wothin il

Y I dinvensional ~ubspace orthogonal 1o Hy,.
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In the enrrent classical preformed-beam techniques, the role of the
“signal free’” combination is approximately played by the mean value of the
outputs on beams adjacent to or close by the one being tested. The fact
that only neighboring heams are considered clearly reveals our uneasiness
abont the omnidirectionality assumption.

The drawback with the previous procedure is that there may be some-
thing other than the signal @y and the ommidirectional notse present. In
particular. there may be other sources which are not well described in the
direetivity concept as unwanted omnidirectional noise. These other sources
can add unknown contributions to both combinations R(, and V. and can
he labeled as “unwanted signals.”

Concerning the presence of unwanted signals arriving al the array as
plane waves which are uncorrelated with each other, with the wq source,

and with the omnidirectional noise. two situations can arise:

[. ti the first situation, the direction of each unwanted signal is known,
so that we have knowledge of

«; and therefore H,

ws and therefore Ho,

wp and therefore Hp.

One must then seek a “source-free™ reference for the omnidirectional
noise which has a vector 'V orthogonal to all the vectors

HoH,..  .H,.  Hp

For this to be possible, there must exist a subspace “free of sources.”
Thus, V. the number of sensors in the array, must be larger than
I’ 1. the number of sources present. This is but the first illustration
of how the array has to he large enoneh to surmonnt the complexity
ol the source system. This topic will he disenssed further in later

sections,

It the condition V- P Lis fulfilled it is possible to remove the
omnidirectional notse spectral density from the ontputs of the com-
Linations derived from the H, according to 12100, At the Hy ontpud

b - '0.'-‘ . : '

¥ J u Ay

A




;;r{

-
4 _\_n
L‘-:“
\.':
N \-h
{ (6 DIRECTIVITY
o
o
o I o .
N we will still have spectral contributions due to the unwanted signals.
N , o
A3 Spectral analysis will yield
. : A
]
. - =, — .
') Ao = d+d RoH " + -+ + dp [RoHp|”  at the Hp output,
A C LI 0Pl -
N :'_, 4, = dIRHol"+d; +--- +dpRiHp|” at the H, output,
g
RS
A :
~— — — 2 —
9 ;}. Ap = dIRpHp  +---+dp at the Hp output.
!l. 3
From this system of ( P+ 1) equations for the (P4 1) unknown spectral
-'Q',: densities one can identify all the sources in terms of their individual
v « A
NG spectiral densities.
o
3 .'-’
B 2. In the second situation, the directions of the unwanted sources are
unknown, but the number of sources is expected to be much less than
-‘\f N. It is then still possible, in principle, to remove the omnidirectional
i:-: noise from the Hy output. By sweeping with a variable combination
e V all the subspace orthogonal to Hy., we can determine a cone in
W . . . Lo -
&N which the noise is both minimum and constant at the output of V.
’ 122 R . « oy . . ‘
['his value is qualified to represent the omuidirectional noise. Such a
“ » - . . v .
Ao process is certainly painful and will be used reluctantly, because the
1’.‘ strict omnidirectional noise assumption can not be trusted to such an
.;Q': extent. Anvway there is now no way to eliminate the contributions
0¥t fromy a random distribution of other sources. ldentification of the
J spectral density d is hazardous if not impossible.
¥
A In the practical implementation of classical beamforming, wheve every
o e wavefront is taken to be a plane wave, one seeks to build the array large
s enongh so that with its many narrow beams it can minimize the scalars
® (R,H,) and limit the interference between sources. Within the limited
ey : . C e -
Y framework provided by the directivity concept there is little inore that can

TR

he done.

.. 2.9

The discussion of the directivity concept can be summarized as follows:

" I, Only its expression as a receiving array gain need he considered here.
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A 2 The description it employs of signal and noise structure is over-simpli-
N tied compared to that in the real world. Thus, this deseription relies
::: on extremely stringent assumptions.
L 3. The status of waves differing from the one carrving the Slp;nnl IS some-
' u! - ' N .
: what vague and the possible presence of unwanted signals consider-
»
N ablyv complicates the identification of the wanted signal.
WIS
. y- . . .
Fy " LT he role plaved by the correlation matrix is modest. Actually, because
- the funetion Die. f) s usnally divectly aceessibles the appearance of
- the cross-spectral density matrix in the presentation in section 2.1 was
YR , o S .
i nnnecessary and somewhat foreed. The only reason for mtroducing
N . A
SR it was to present the directivity concept in a manner which will bhe
" _; exsential in later seetions,
s A= o formal and Hnal remark we note that once H had been chosen to
f‘ .- . . . . .
cnal he a colmmm matrix, it was quite natural to choose R to be a row matrix.
Cah - . . . . .
N Beeanse it is desirable to handle only vectors of the same species, however,
-~ N ..
PR we can choose the filter vector also to be o column veetor. With the con-
{ ) vention that the freguencey responses appearing in the filter column veetor
o5 are taken to be the complex conjugates of the actual frequency responses,
DU the trauspose conjngate of the filter colummn veetor will be identical to the
row vector with which we have thus far dealt. Henceforth we shall deal
. only with colimmmn vectors,
~ _E
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Chapter 3

ADAPTIVE SIGNAL
PROCESSING WITH A
KNOWN WAVEFRONT

3.1

We first have to comment about stationarity and adaptivity. Clonsider a
cemote point like source transmitting a random signal $(¢). This signal
reaches a set of N sensors after passage through a propagation medium.
The veometry of the array is known and can be referred to in terms of
coordinates. Usually the spacing of the sensors is about half a wavelength
of the highest expected frequency. The outputs of these sensors are N
voltiges exclnsively caused by §(f) as modified by the medium. So far no
other sonrce or noise interference is presuined to be present.

I'he relation between the N sensor outputs can then be described in
terms of a correlation matrix in the spatio-temporal domain, or of a cross-
spectral density matrix (CSDM) in the spatio-spectral domain. Both de-
~eriptions are equivalent: the second will be preferred here for its simpler
matliematical symbolism. Although the C'SDM s used. we are primarily
mferested in large bandwidths and not pure sine -aves. From a strict point
of view correlation implies stationarity and neither the signal S(f) nor the
medinnm usnally meet this eriterion. Nevertheless the limited time quasi-
stationarity assumption is the cornerstone of adaptive processing in both

patio temporal and spatio-spectral domains.

19
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-0 . .
. More precisely we shall assume that the fluctuations of the medium are
0% | A
:,.::: Jdow enoueh 1o he considered as quasi-stationary over a time T, which for
o . . . . .
hn ihe ocenn is estimated to be of the order of one second. Concerning the
') denal St we also assume the same time 77 of quasi-stationarity. Further-
AN . . . )

o more we shall be concerned with signals of more than a thousand Herty
N . . .. . . Cop

: bhandwidth 117, With sueh a large time-handwidth product (10T - 1001,
P N the probleny of estimating the second order statistics should not be too criti-
g . : . , C
e cal. Anvway such estimation methods have heen the focus of much scientific

terature (1) 1130 and improvements can still be reasonably expected.

* Y e .. . . .
- Ihe present paper assumes the validity of these estimation methods.
8 CILY . . . ' . . .
it Under these conditions the elements of a CSDA can be estimated with
e

" - . . e . . . . .
g little significant error. It is then pointless. and frequently unwise, to 1m-
Ly pose an artificial relationship, such as the Toeplitz assumption. upon the

experimental values. This position being adopted, two remarks must be

macde.

[, Al the estimation methods commonly in use today implicitly vely

! on the cristenec of a stationary process which 1s estimated during
3 < himited time interval. Actually the real problem is how hest to fif
1 a . . .
’. this stationary process to a non-stationary data sequence. Althongh
" A A | I
108 . . . . . . .o
:.-, this distinetion may seem slight o it conld be the basis for refining the
e et it i hods
Cota extimation n TO]S,
A , . : ,
n 2 fvery estimation method relies on assnmptions about the process
+ Sal . - . .
g inflnencing the data ontside the avatlable sequence. 1 seems reason-
o, . - . . . -
e, able that a “good™ method should he one with few assumptions. Fhis
bl coneept will be used as a guideline in this paper.
®
Ve,
. &Y . . e .
AN In short. we will ohly consider spectral and eross-spectral densities which
o . . . . . rre
»y are valid for a limited time and experimentally renewed every T seconds or
> . Sy . A , . !
ol faster. sueh as the DELTIC {Delay Line Time Compression) procedunre! (1L
W, -
' 4
4 Bl
'\,"’; Ul his almost foreotten procedure. which was ariginally implemented nsing delav ines,
) :'-‘ can b transposed o computer algorithms, TC provides the maximmmn amonnt ol ovetlap-
M ping data (masiman adaptivity ) compattblbe with the samphng patesat the cost al some
o computer speed nmltiptied byoa Gotor obtaned from e time bandwidth product.
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3.2

We must now be quite clear about the source vector and wavefront. Within
the framework of the previous uasi-stationarity concept, let us recall the
single source transmitting S(t). The transfer function between this source

and the output of the n'"

sensor can be represented by a linear filter
with a complex frequency response ¢,(f) which is a component of the
N-dimensional complex vector <I>(f)

W d,( f) is the frue spectral density at the source, the cross-spectral
density between the output of sensors n and m is given by a well known

expression already presented in

Gnm - df(f)d)"(f)ém(f)

To disencumber the notation. the frequency will henceforth be treated as
an implicit variable except when the contrary is specifically stated. With
this change in notation,

Gnm — dt @nd),'n (3.1 )

: column element of the CSDM linked to the source. By
convention 4 s given the status of a column matrix. then the CSDM is

th 1

i< the '™ row, m!

Q- de6' (3.2)
We then deline the “source vector” as

- L.

S=d;}d, (3.3)

which allows the CSDM to be written as a dyadic product of the vector S,

q - sst. (3.4)

We also find it convenient to introduce the concept of “wavefront” as
the pormalizad vector (and also column matrix)

b
b
where the scalar ]
b (d'»‘rd;)' (3.5)
T R NS A L A R AL N, A NN
NS A, A X '(N' .'l.. ..u. .' "‘l'c .'!‘I.n () 3 W
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22 ADAPTIVE PROCESSING

and obviously FTF 1. Vector Fis not the physical wavefront but only
its fransfer through the medivm and array sensors. For the sake of lexi-
cal stmplicity let us accept this shght discrepancy with orthodox physies.
The wavelront is then associated with some particular source position aud
associated with it is a fixed set of filters.

The spectral density dp of the source is unknown since it is the ohject of
identification. The vector @ (of filters ¢,) is also unknown since we disniss
any knowledge of the medinn in this paper. What can be mieasured at the
output of the sensors are the components of the source vector

S - did
di |®|F

with their relative amplitude and phases. But with the absence of any

l.
knowledge about the source. it will never he possible to isolate df from the
unkuown (. So introduction of the wavefront vector is justified. and the
array is only able to vield an apparent spectral density, d, given by

1

At dE (B (3.6)

This relation relleets the ability of interference, for example hetween co-
herent multipaths. to alter the spectral density of the source as it is seen
through the array. Finally. the expression for the source veector is

1 -

S d*F (3.

-
-1

with FTF - 1 and STS - d.

In this section. the wavefront vector is supposed to he known a prior:,
even if it does not correspond to a plane or spherical wave. The goal
of dentification is the analysis of the only accessible spectral density, the
apparent one, d.

3.3

At 1his ,)nim we combiane the sensor ontputs fo obtain an estimate of the

apparent spectral denvity using concepts mentioned previonsly in chapter 2.

O Ly W OO0 K ()
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This is relatively easy since the wavefront vector is known by its N complex
components f,. We then build a set of filters with the complex conjugate
responses f . Adding the output of these N parallel tilters produces the
;_{Inl)&ll [‘IH(‘I‘

N =FIR =1 (3.9)

The {requency response of this all-pass filter yields the apparent spectral
density of the signal for the purposes of analysis and identification. This
will be referred to as the “main ontput.”

Incidentally the filters f, may not be causal. When this occurs they
mnst be built with the same additional time delay, in order to translate all
the impulse responses equally within the domain ¢t > 0. Also, when a set
ol lilters is claimed to be represented by a column matrix f‘, it is, in fact,

the row matrix I‘:]L with complex conjugate frequency componeunts of F.
With this convention, it is not necessary {as in chapter 2) to use dillerent
svinbals for a wavefront and a set of filters matched to that wavefront (see
section2.9),

Dropping the fiction of a single source, the presence of some unwanted
noise in the main output will now he considered. Contrary to chapter 2,
thie spatial structure of this noise is unknown. Indeed, it does not need to be
known. The only requiremment a source must meet to be considered noise is a
lack of correlation with S(/). In general, the source may be either spatially
concentrated, such as a januner with an allowable wavefront vector which is
diflerent from F. or diffuse such as background shipping without a distinct
wavelront. The structure of this global noise will be adaptively learned by
measires on the sensor outputs and estimation of the CSDM. While the
<ot of filters F is not adaptive, everything else front now on will be, with
the time constant T,

3.4

Unfortunately, as in chapter 20 we can never know whether the estimated
CSDAT corresponds to signal plus noise or only to notse. Nevertheless it is
possible to get an indication of the noise by using knowledge of F. Since
the <ot of filters with components [, represented by a vector L orthogonal

o R AT e R e S0 N e e e W T N e it N S N L L S A L S Mo
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to F eliminates the signal.

LiF o (3.9)
YRS qm vale "’l\
N0, (3.10)

.
the ontput of the combination of sensors represented by L will be a “signal-
free reference”™ (SFR).

Withio the V-dimensional space of the complex column vectors which
span the CSDM. the entire (N - L)-dimensional subspace orthogonal to F
ix available to vectors of the L type. The full exploitation of signal-free
information®is then dependent on this subspace which may be spanned by
a set of linecarly independent vectors L, (L= 7~ N - 1)orthogonal to
F. Since we may arbitrarily choose the filters subject to the constraint

L'F o (3.01)

we select a set which satisfies the condition of inter-orthogonality
L}LL'L. =0, j# k. (3.12)

Additionally we can further restrict the filter vectors by requiring noneor-
relation hetween the oulput of combination L, and that of combination
L.
I;_?CIQ_ =0, j = k. (3.13)
This point is discnussed in more detail in appendix D.
The vectors L st be derived from (3.11 ) (3.12) and (3.13). One might
argne that C. the CSDM of the noise alone, is not experimentally estimable.
However hecause of (3.11), (3.13) can be rewritten as

. - .41
L [c | dFFJ‘j Lo 0. j/k (3.1)

where the matrix in brackets s a signal plus noise CSDNL As a resolt we
are allowed to wtroduce the CSDM estimated on the sensors mto (3,10,
reqardless of signal presenee or absenee,

SContrary to cuprent assumpfions, there certainty s never a noise alone situation at

the omtpnt of the Fooombination. This is the usual predicunent in long ranee puassive

curveillanee
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\

: Let us now see under what conditions (3.11), (3.12) and (3.13) can yield

N a unique solution for the filter coeflicients L;. None of these equations can

determine the arbitrary complex scale factor of L. So the actual number

] of unknown scalars to derive is only N — 1. Since there are N — 1 vectors

> L, subject to this system of equations, there are (N — 1)? complex scalars

to he derived.

o Now (3.11) corresponds to N —1 scalar equations while (3.12) and (3.13)
cach correspond to (N — L)(N — 2)/2 scalar equations obtained as j steps
from I to N — 1 and k steps from 1 to j — L. Totaling the number of scalar
equations we get (N — 1) + 2(N — 1)(N - 2)/2 = (N - 1)? which is the

nmber of equations required to determine all the complex scalars uniquely.

'f:"l

We then have a saturated system of equations from which the vectors
L, can be derived. Although these filter coeflicients are completely inde-
pendent of signal presence or absence, they are adaptive to the noise. Thus
it is possible to transform the original set of N sensor outputs to another
svstem for which the “main output” lets signal through as an all-pass fil-
ter (unaltered signal with the spectral density d), and the other (N — 1)
- ontputs are uncorrelated with the signal and each other but possibly cor-

{ related with the noise in the main output. From now on C will denote this
transformed ('SDM.

[

ey

r

3.5

The above possibility is so important that it is worth further illustration
by a different approach. Let us first require the vectors L; to be orthogonal
only to F but not to each other, and to be distinct so a full description
of the noise subspace is possible. In particular we can easily build the
non-adaptive vectors:

NN

Lol o

L8

fz "fj- ~f1'\1—1

:::/ I 0 0
o 0 0 0
L, . L, . ... Ly, - : L (3.15)
:;': 0 I — jMrow 0
. 0 0 Iy
(l
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which are distinet sinee they use different paivs of sensors and which satisly
LiF o

These I;‘, combinations yield correlated SFRs, however we wish to retain
the signal free-information in a set of nncorrelated SFRs. To do this we
lincarly transform a set of correlated SFRs to a set of uncorrelated SFRx
which are their “orthogonal images.” The method adaptively estimates
the eigenvectors of the noise CSDN subspace orthogonal to F. Then. ev-
ery eigenvector is used to form a linear combination of the original SFR~.
Because of the particular properties of eigenvectors, the new SEFRs are no
longer correlated. This process is the physical expression of the diagonal-
ization of a matrix which is discussed in appendix D.

With respect to this new set of basis vectors. the CSDA has a specific
aspect involving diagonal elements which represent speciral densities. and
ofl-diagonal elements in the first row and column which represent cross-
spectral densities with the main output; all other ofl-diagonal clements are

zero because the SFRs have been mutually decorrelated.

) Cny  Co2 Con
€10 1 (i (1

C ] 20 0 con - 0 . where NN L. (3.16)
CNn 0 0 CNeN

All estimates of the elements are signal-free except eoy. Indeed, any eross-
spectral density between the main output and a SFR is signal-free. even
when signal is present, since signal is not correlated with any naise. nor
with any linear combination of noises such as a SFR. Any cross-spectral
density between two SFRs is zero since the noise has been decorvelatedd.

We reach the situation illustrated in figure 3.1 in which a main output
with a possible signal of spectral density d and a noise By with a spectral
density cgn is combined to produce the final output with the nuneorrelated
SFR's, I3, to By having speetral densities o to exov The speetral den
sities o, can be adaptively measured on the corresponding ontputs except
eoo which may he “polluted™ hy the signal presence,

We now hild a vector A% representfing a set of filters which s an all pass
fitter for the signal and which vields a minimized noise spectral density, This

veetor has oy [ for the first component and combinations of the maim
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FINAL
OUTPUT SUM [/

® L

/1 o il
B, .
2 ’ }’_—
NON B,

Lo
CORRELATED ¢ 3 —— V3

SFRS

\ P— IV:FP————
N = N N

Fignre 3.1: Simplified Processor with (N — 1) Decorrelated Signal-Free
References,

ontpnt aud SERs for the remaining components,
. .
Vo o=l 00,0 0N (3.17)

The resulting spectral density projected on Vis given by the quadratic lorm

VICV. The constraint g = | on vector V can he expressed as follows. Let
ns consider an 1\ _dimensional vector I with all its components null except
the first one. 11T = = [1.0.0....0]. The constraint can then be written as

ifv - vifi=1,

which are particular cases of
‘\“ﬂﬁl ~ 1 (3.18)

We can then vary vector 'V so as to minimize VTCV which is equivalent
fo maxinizing

P (3.19)

viev
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[%

LA,

s

Phe solution is derived as in section 2.6, with:

ey
s,

5 #"'-.'," ¥
., s 'c

B

X  replaced by V.
H, replaced by 1.
Y replaced by MV,

o
P, replaced by (MT) .

£

v

)

: -“5
o
X : i i
Fquation 1.1 can be written as
\{“ "' g T L IS Y .
o CV = oll. {3240
>
LS
‘?I
ad where o is an arbitrary scalar. What matters is that (3.20) expresses the
L] . Rpon i “pr . \ . .
. fact that the components of CV are nullified except for the first one. Using
' (3.16) and (3.17) we now write,
i
”
L}
L) . it o -
: . o t UiCi, - 0. J - l.x\/ . (’v.”i
.
\_ Two remarks must be made; first, the spectral density egq does not ap-
’ pear in (3.21). hence it is also abseut from the components v;. Thus veetor
.__': V represents signal-lree information. Second. every component of 'V (ey
ol copt g - 1) is dependent only on the spectral density of the corresponding
.K . A} M o - . . . .
o SIR and the cross-spectral density of this SFR with the noise on the main
At . e S v . . .
X ontput. This last remark is intuitively predictable from the non-correlation
J of the SFRs. The entire process is a repetition of independent proccsses for
‘: each SER. The filter to be put on the ;™ SFR is the complex conjugate of
’ :
Yy the component v,
A . ;0 Co, o ey
r'\',:- l']- . ( ") = B (’)._).3)
A: ‘ i i
R Atthough we might now give a formal expression of the minimized noise
" S
QY VJ[CV with the vector V we have just determined, it seems more fruitful
\ . . el
L7~ to look into the physical significance of such a result.
~ )
o
s
X 3.6
o
o Let us consider separatels the nyain outpat and the fiest SR Filtering the
. . . . . .
>y latter with oy oy and adding the pesudt to the main ontprt is cquivalent
(¥
L)
e
o
L}
"
5
.:"..
@
ra i
o
L
.
~
f‘
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MAIN OUTPUT WITH B, (sd : coq) Bs +

AND SIGNAL (sd: d)

SIGNAL

FIRST By lsd:cyy) B,

FILTER X

SFR

Co1/C11

-

Figure 3.2: Processor with a Single SFR Noise Subtracter.

to filtering the SFR with ¢gi/cp; and subtracting the result (see figure 3.2).
.ot us now proceed (o design a filter,  (also shown in figure 3.2}, which
minimizes the spectral density of the noise in the output, B, = By — Bj.
Hlenee using the rule given in appendix A with the notation sd = spectral
density and esd o cross-spec

sd B, esd|B,B,]
esd[(Bo ~ By)(Bo — By)]
sd[By] - esd B By) ~ csd[BoBy) + sd [Bj)
But:
(‘S(l [[}; B()] = 107
(‘Sd[B()B” = C()l{l"
S(I(B” = ('11(.'"'2 = ('“.'7'11’,
So that
sd (B, con cyor o ey (3.23)

Varving 2 to get a minimunt, we must have for any value of the increment

S

Sl denr

tral density:

carl b s ler

"m] 0
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_:: henee

~ epr e 2 0 (3.21h
o . o

\ which again justihies

q o1

3 x
i Cry
\' . . . . .
‘- [t is remarkable that the left side of (3.2:0) is precisely the crossospectrad
- density of B, with By Indeed looking at figire 3.2:

B, Bo - B
esd 1B, By esd|[Bol3i] esd (B3,

esd [BoBy - ol
esd [BIL — (esd [ BB

(eypr)

Tootnr

henee

va ".) IV {EA AR AAA

esd [B, Byl = ear - eqgr

{
oS whicl ix precisely the quantity nullified in (3.2:4) to minimize the ontput
'-.:' noise. 1t so happens that the same filter which provides {he anmininn of
:,' oulpul noise. also nullifics the corvelation between the output and the SER
:_\ mvolvad.,
In very gualitative (even hardly scientific) terms a physical interpreta
N tion could he presented as follows. The filter cor/ ey draws from the SR
::' what conld he considered as the hest “hkeness™ of By so that the subtrace.
:: fion of this Lkeness vields a minimum of residual noise. Ax a vesult. the
u:\' “likeness™ of the SI'R has been removed from the residual noise remaiing
in .. in other words I3, finds itself decorrelated from the SI'R.
-.- The spectral density of B, as derived from (3.23) and (3.21) ix
e~ ,,
:: s ‘,)’,] Con 1('”] (3.2
o 1

Sinee the spectral density of B3 ds gl oo we can see that lor this par
ticnlar operation it happens that sublraciing fieo noiscs o cquivalont L

subtracting ther spoefval depsitics: this s far from a general rade and

P
- ] i a h
l’i'l‘ll.l‘l,d‘ .

at Hiest elance, even he looked npon as paradosical.
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3.7

The repetition of the same process with the other SFRs is obvious. With
J stepping from 1 to (N — 1), we put a filter, co;/c;;, on the j™ SFR,
13 and subtract the result B’ from the main output to oblain the set of
spectral density reductions, 1('0_,$3 /c;;- When all the SFRs are exhausted,
the output of the whole process is uncorrelated with each SFR and possesses
the minimized spectral density

N - ICO v‘Z
~ .
Cimin = €00 — L ‘T{—'- (32())
1=1 (J.)

It is easy to check that e, is positive and precisely the value of Vfé{/
([rom section 3.5) when V is the solution of (3.22). Since the signal is not
correlated with the SFRs. the unaltered signal spectral density d may be
additively superposed on ¢y, While the sum on the right side of (3.26)
only involves signal free estiinates, cgo may or may not contain signal. As
a result we still can not say for sure whether the spectral analysis of the
final ontpot yields cpn + d Or €y, alone.

Aihough we are in a common situation with a signal and a minimized
noixe nnder the constraint of unaltered signal (Wiener), we are close to
achieving something better. Indeed only one scalar relation between the
clenents of the noise alone matrix € would provide a way of computing
noise alone, con. as a function of the other elements. We have exhausted the
Ml arvay power and now need some a prior information. Incidentally, it is
casy to cheek that the wanted relation is not provided by the computation of
o and of the first component of vector CV in (3.20). So il any bit of reliable
imformation is available about the original noise, it can be transposed to
the SIFRs and provide a relation. That would give us a “super-resolution”
svstem where the second order statistics of the unwanted noise could be
climinated, and the spectral density of the signal could be derived from the
<peetral analysis of the final ontput within princple. no error.

3.8

[f o assmmption is suggested by the physics of the situation, we can still

try to dllnstrate how the Ssuper-resolution svstem.” vielding no error in
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‘_::" ~tenal pdentitivation, conld he <’l)|l.\"i"lt‘l‘<‘(l an Casvinptotically Toee arcen
:::. asstmption.” The original CSDNL T taken divectly belind the sensor i
¥ o traly operational situation cannot show an ceactly noll cigenvalue. 3ot
'-) the smallest may be very suall as compared to the largest one o loct
-:: fest that the array has enough sensors to “surmount the complesitv™ of 1h
:-.:: avoustic lield should appear when looking at the set of cigenvalues. Fins
:C-’ sef shonld exhibit a large span of values. Tatuitively the simallest <hioubd
o Jdeerease when the number of sensors. Vo inereases. The validity of tlias
e “asviptotically Targe array assumption™ 15 dependent ot anle o Vb
‘::: mueh lareer than the nmmber of sonrces. hut alzo on the medinm comple e
:.r" and the stracture of the diffise noise sources (see chapter 1.

Now for any C'SDM with a non-zero smallest cigenvalue o0 we can

S A

write

It

Yl 1 ¥
' } (mmI,'\'~

§ .,‘
I -~ . . . . . N YN . -
~.':- where Iy stands for the unit matrix of order N Then 17 is a “singular
~- . . ) ) .
oy matris with one zero eigenvalue or more. A well known physical interpre
0 . . . . . . .
) 1ation ean be proposed in which o, is the spectral density of a fraction
. h ! min ] A

ol noise which is uncorrelated between sensors and has the same spectral
density oneach sensor. This inferpretation of o, ix typical of o osort ol
hickeround noise of separate but identical preampliliers. But such aw elec
e noise 15 known to Te far helow the muninvon acoustic tevel 1o mo
arravs. Such an interpretation of ¢, does not mean that it is the physead
vealiiy for anv CSDAL L. but as the array grows in size and the span of the
cigenvatues spreads, it becomes more and more Tikely that the decreasing
G conld really represent this kind of noise. owonld be sl ore eredi

Lle if two or three eigenvaliues were found with abmost the same noninimm

valuie: and ol conrse, a minimam practically negligible as conpared to e

Lareest eigenvalues. The “asvinptotically large array assumption” consists

in stafing that fhis sort of nose cannot crist acoustically and theretore the
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(o, vielded by the original array can be simply neglected,
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I the frame of sueh an assnmption T becomes. like 700 sinaulay”
CSDAL Sinee the main ontput and the SER < are devived Boearhe Bram the
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acoustic-notse on the main output and the SFRs. It is easy to check that
(3.26) also reads
det (C)
Cnpin = (3.28)
CriCon " CATNY

<o that accepting (3.27) is simply accepting that there is no noise on the
final ontput and we have got a “super-resolution™ system. This can only he
credible as a limiting representation of infinitesimal “background” acoustic
noixe il C possesses a large span of eigenvalues and if the minimum value
i reasonahbly negligible.

3.9

.ot < now reconstder ficure 3.2 which shows a “noise subtractor.” This ter-

minology is generally associated with “noise canceling” techniques, where
the nnwanted noise on the final output is really nullified. In fact noise can-
celing 1s the same device as in figure 3.2 but used in a particularly favorable
situation where 3, and By are “fully correlated.”™ It means that both noises
coming, ftem one source throvgh linear fillering, Bg can Le seen as a noise
produced from I3 throngh a linear filter ¢. We then have

(',\'(\i[}][?(,} - (‘l](j)' Cio
5 2
.\'fl [l}()’ - ('ll J(:)} o
and therefore
2 ..
cooC1r " 110l (3.29)

for any possible o, This is the nsual test of “full correlation.” Equation
(3.20) then vields sd [B,] == 0 and the noise subtractor is as nearly perfect
as [ull correlation is achieved.

It is time now to complete figure 3.2 with the processors it implies.
This is done in figure 3.3. The two time delay devices (or algorithms) are
there to ensure that the subtraction is really achieved with the very same
cequenees of By and By which participated in the huilding of the filter with
a time constant T This device, or the algorithmic equivalent of figure 3.3,
i~ known in the French scientifie hterature as a “corvelo-filtre™ and has heen
extensively studied and improved in the past fifteen vears [15-17].

\ particular feature of the correlo-filter.in fact a degree o freedom for
the processor, is that any preliminary linear filtering of the SR does nof
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B, + SIGNAL N
-— - TIME DELAY . + .
T _
Y
ESTIMATION OF
C01 C11 AND CO‘I/CH \
WITH TIME CONSTANT T
\
B A TIME DELAY EVOLUTIVE
S T T FILTER
Co1'C1y

Figure 3.3 Adaptive Processor with a Single SEFR Correlo-Filter.

change the spectral density of B, This is why. in its present form, we have
preferred fo first “self-whiten™ the SFR. By with an open or closed loop
algorithim and then proceed with a normalized value of the spectral density,
e e which is not frequency dependent in the useful bandwidth.
A sell-whitening filter must have a frequency response 1 such that
TP e ey The phase law of this filter is free which makes it casier to
build. and. as mentioned above, does not affect the result. Figure 3.3 s
then moditied as shown in igure 3.1 where the filtering of the whitened
SR B, can be coneeived in the time domain as its convolution with the
cross-correlation fnction of Bo with B and the essential scale factor | e
If all the other SFRs are whitened at the same speetral density ¢ and if
we nate correlo-filter (C1) that swhich is framed by the dotted line in figure
3.1, the processing from the sensor ontpnts can be sketched as in figure 3.0
This lgure could he presented as an open loop solution™to the original
problen of getting the signal spectral density with a minimunt of nnwanted
noise and. for a large arravowith practically no noise at all. Nevertheless it s

not mtended hiere to propose sueh an open foap algorithin lor operational

e paecess of the SER diagonalization. the Tilding of orthogonal fmagess can b
achieved with a ccasoadine” seqnence of CEFe Sothat anopen loop salition is coneeptially

Fasilt swith the CF as o standaaed meedate st nniveraal Tadek o spatial processing TA1
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Yo Figure 3.1 Correlo-Filter in the Time Domain (with Self Whitening of the
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4 D SR,
1
*u
?
1%
s
= . . . .
-,,:: o practice. hut rather as a tool to illustrate the physical meaning of the
[ . . . . s .
W successive steps and to allow experimental checking of the specific properties
> . v
' deseribed at each step. Still. any practical solution has to preserve the
) fundamental property of a processor which is independent of the signal
= A
]
S presenece or absence.
QN
{CEA
."l &
h) o &
(O
-‘-p -
:‘ 3.10
*w . . . . . . .
o e A serious weakness in adaptive processing of known signal wavefronts lies
-:§ precisely in the reliability of the a priori information. When the signal
R wavefront happens to slightly differ fron the vector Fowhich it is supposed
. LY to equal. signal components will appear in the SFRs whose vectors L are no
= longer exactly orthogonal to the signal. The effect this can be expected 1o
Lo proditce on the main output, is explored here. To simplify the presentation,
';\ * we will It this investigation to the first SR
b What is modified, as compared to figure 330« an additional small
s o~
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amplitnde signal superposed on By which can be considered as derived from

A
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the main signal throwgh a filter whose frequeney response will e denoted

&
g
'y

by oo Then we have a new exsd between the main ontput and the SI'R.

Ly
P A
AL

Cor o cor doduTy (3.50)

",‘1 %y
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while the spectral density is also modified.,

ad

ey bd el (3.31)
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RO

EONY Y )

>

which vields a dilter oy @ The former ond put noise 13 i altered 1o
If1 S0 1II2\'

o
-

r
e

e (13011 Al o QL
\4[”f “n]or ST

A R
l.l"l

5 Y
';gkt

o
- LT

.‘
'?ﬁqﬁ.

B2y




2o

cny

ADAPTIVE PROCESSING 37

On the main output. B. becomes f?, with:

sd [lfi’,] = sd [By] — csd [BOB;] — csd [f}; Bo] + sd [1.3;] .
csd [Bob."l] = csd [BOB.l] Q" =@,
S(l IBJ = Cop — 501(—2' - (.'(')1Q -+ 511 |Q|2

Henee
oot
it Co1
sd [B ] = Coop — T

1

and finally
- lcor)” + d (¥ +¢) +d2|¢l
sd {B,| = coo — 3.32
[B.] = coo i (3.32)

The noise itself is increased by only a second order term when ¢ is small,

’(‘0112

e+ dll/"z

Coo —

The main point is that some signal now comes through the loop of the
correlo-filter. This produces an additive alteration of the spectral-density
with the first order component -d(y* + ¥ )/cyy. So the signal spectral
density. di1 - (v 4+ w7 )/ey]. may be larger or smaller than the expected
density, d.in an unpredictable way since nothing is generally known about
the filter oo. Small or large, the most spoiling effect of signal leakage into an
SI'R lies in the fact that the signal spectral density becomes distorted by a
process which has been conceived to preserve it. That is why other methods
hiave 1o be considered when the signal wavefront is unknown (chapter 4).

3.11

Nevertheless compromises can be considered in order to make the previous
processing more robust. Leakage is a consequence of uncertainties about
the signal wavefront which can be expressed in terins of subspaces andl
SERs. I the signal wavefront cannot be exactly assigned the shape of
veetor FLoat least it will be generally possible to aceept it as being located

3

in a limited subspace “around™ F. This signal subspace is the generalization

ol the notion of heamwidth inasmueh as the latter coneerns the concept of
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:'f‘- aperture linitation and refleets only the uncertainty about the direction
s of an incoming plane-wave signal. Anvwayv, the signal subspace has to
~ ywa, g 1
#! . . . - - ,
-3' bhe determined by a set of vectors {F Faoo o0 F b po Nomore or less
' . . '
o neiehhboring F.
Y L . . .
) I'he sienal-free complementary subspace is orthogonal to all these vee
5 \ . . . .
et fors. and is consequently an (N pl-dimensional subspace. With only
‘ ’:'_1' A p) sensor combinations being considered as SFRs the process of ve-
e . . - " . “. .
moving the unwanted noise frony all the p “main-outputs™is likely to be jess
v etlicient than before. Indeed the reduction of the SFR number Hor a giveu
N V) lessens the possibility of explotting an ideal “quast-singnlar™ ('SP
VR A | 2
o of unwanted noise and reaching the threshold where only a questionable
[ L] . . as . . . f .
AT acoustic “hackground™ noise could not be eliminated. Such is the cost to
, * he paid for the uncertainty. plus the painful repetition of the noise subtrac-
- tion process from the p main outputs which requires a total of pt.V p)
::.:-: correlo-filters instead of { V- 1),
::-:'.' In short the larger the uncerfainty, the larger the signal subspace and
e the smaller the signal free subspace whose size is a measure of the process
‘ etliciency. Total ignorance of vector F would lead to a generalization of
<7 bheamforming in an V-dimensional complex space: a mosaic of non overfap-
e . . . ) .
AR ping signal subspaces cach one being processed after its own complemen-
'Caa . . TS
- tary one. Let ns remember we are considering large arrays of 60 sensors
E . . . . . .
* ‘ or more. The computational effort seems beyvond imagination. a true over-
(™ . . oy . . N
B dose of processing. The number of sources possessing a wavelront has to
R e mnch smaller than NV in an array really able to cope with the source
" and medinm complexity, All of these problems might help one to favorably
s consider chapter Fin spite of its own perplexing diflienlties,
AN
e
At
(]
ws 3.12
s
-
'_’_'\‘ As o final comment about adaptive processing it must be mentioned that
-“,;- the technigues of adaptive self noise reditetion (or canceling) are only a par
9. freudar case within the framework of the presentation given in this section.
0. As another example consider the vibration of a ship structure in whicl some
A of the indieed acoustic energy lies within the signal handwidth and reaches
KN I~ the aconstic sensors of o huall-momnted arrav, Obviously the wise thing, to
! 2_ do first.is to mechanically damp the somree of noise. However when the
3
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hest possible result has been so obtained residual self noise may persist.

One possible way to try and clear the array of this noise is to use ad-
ditional sensors (accelerometers) located on or close to the vibrating struc-
tnres. Such sensors have two very interesting properties for our purposes.
They are nearly perfect SFRs because they are mounted inside the hull
which makes them practically iimpervious to interference from acoustic sig-
nals prodnced outside the hull. Also, one can expect that each particular
ontput is highly correlated with that part of the self noise generated by the
tested structure.

Therefore a procedure of sell noise reduction can be considered. It
appears just as an increase in the “size” of the array, each additional sensor
delivering a SFR. Self noise SFRs may or may not be correlated either
hetween each other or with the SFRs already extracted [rom the array. 1f
no reliable information is at hand the diagonalization process has to be
applicd to all the SFRs for them to become uncorrelated. They then feed
the subsequent noise subtracting process of sections 3.6 and 3.7.

3.13

A< conelusion to chapter 3 the major points of this type of processing are
listed.,

[. Dropping unreliable asswmptions about unwanted noise leads to adap-
five processing with the necessary complexity required to track the
variable unwanted noise spatial structure. There is no practical dif-
ference between unwanted noise sources gifted with a wavefront, and
diffuse noise. So the ambiguity linked to the directivity concept and
mentioned in chapter 2, disappears.

The processor yielding an unaltered signal in a minimum of unwanted
noise can be analyzed by starting with the huilding of a specilie sensor
combination to carry the signal and (N 1) sipnal-free combinations
(SF'Rs). Then the SFRs. generally correlated. are combined in such
a way as to decorrelate then. Further processing is a repetition of
“noise subtraction™ (noise itself and its spectral density) between the

main output and the decorrvelated SEFRx.
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P

N 2. The possibility of getting a “perfect™ vesult (no additional noise mixed
: with the signal) is linked to the aptitude of the array to surmount the
N complexity of the source-medinm system. This aptitude is obviously
N hounded by the size of the array (its own “complexity™). It can
. he tested with the set of eigenvalues of the CSDNL The spatlest
. eigenvalue has to bhe negligible as compared to the largest ones.
, . The signal source-veetor is known; but therein lies the performance
limitation. Any slight swerving of the source veetor has to he o when
nnpredictable, connteracted at the cost of a loss of unwanted naise
::: reduction possibilities. Being more matehed to the unwanted noise
o than classical beamforming. the processor is sensitive fo any strict

assnmption about the signal source vector.

ale.
o

[t ix a vanity to expect. in real conditions, a simple way of coping

simultancously with “hperfections™ of a given sonree vector, and an

o w

L~ unknown multiplicity of sources. The trausposition of heamforming
K. in a V-dimensional space is fantastically complex for large arrays.
k.. and useless since the number of sources is much less than the namber
. ol sensors, a definttion in some way, of an “eflicient™ array.
I-'
= . The processor composed of correlo-filters described in fignres 3.2, 3.5,
- 3.0 and 3.00 is one possible type of minimum variance distortionless
N . . : . L .
\ filter. For the sake of physical significance it has heen presented and
dizenssed here in hardware form. huplementation in software is also
: possible i enongh computing capacity is available.
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2 Chapter 4

& IDENTIFICATION OF
£ SIGNALS WITH UNKNOWN
. WAVEFRONTS

- -
-

- 4.1

i‘ We now come to tle main goal of this paper. How can we identify the

. ! spectral density of a source with a totally unknown wavefront which must
(- also be determined? In other words we will be trying to find the minimum
' information needed to restore the spectral density after dropping all a priori

; o knowledge concerning both the signal and noise.

’ In previous sections the source had been characterized by a known vec-
! tor involving the notions of spectral density and wavefront. Here such a

1 specitie characterization will not be assumed. As a consequence there is no

i e longer any way to distinguish between several sources. This puts us in the
o position of being able to identify either none, or all sources simultaneously.

Under these conditions the concept of what may be a signal has to be rede-

- W e e o

, :_3 Jined 1o include every source gifted with an a priori unknown wavefront. It
K U then becomes difhicult to separate those wavefronts in which we have some
y practical interest from those we wish to ignore. Previously the existence
g of a wavefront which characterizes “interesting sources” has been implicit
in all spatial processing. But since it is now the only assumption retained
, about a signal, it is worth mentioning that cven this constitutes a priori
. knowledge. Il the existence of wavefronts comes into question the basis of
{.‘: .

'
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{ 42 UNKNOWN WAVEFRONTS
D,
oS
U . . . . . .
: all spatial processing is removed, including this whole paper.
S . . .
Obvionsly some experinients are necessary to determine how much we
) can rely on the wavefront notion. The characteristic feature of a source
' - . T . . e Sa .
A gifted with a “perfect”™ wavefront is a rank-one CSDM, SS]L regardless of
B the the propagation complexity between the source and the array. The
A . i - . PR . . .
T dyvadic property of this matrix is the result of so called “perfect spatial
Y coherence™ which is characteristic of a single “perfect source.
Y . . . . - .
I'he question which needs to be tested in operational conditions is
2 whether or not a remote source, which is powerful enough to produce a
A
.V

definitely dominant contribution {20 dB or more) on the output of creery
sensor, really yields a rank-one experimental CSDM. From such experi-

ments the maximum array size for which the dyadic source approximation
will remain acceptable can be determined to some degree of precision. We

.

"", . .
4y 111) ‘ AN A A

expect this array size limitation to be much larger than the sort of apertures
on which every wavefront has to be a plane or spherical wave. Hopefully we

are now in the realm of “large arrays™ which has already heen mentioned

X in chapter 3 and will be more precisely presented in section 4.3.
4
v

-

<

~

X 4.2 _

*

%

It is now clear precisely what properties a perfect source signal has. Noise

SRR

ix evervthing elses a mixture of every kind of diffuse source not possessing

a ! the wavefront notion. with a CSDM generally exhibiting a rank which ap-

:,: proachesits order. We thus have to disentangle an acoustic field made of an

j :‘l nnkunown nuwmber of “perfect sources™ from a “noise™ with no characterized

Ly wavefront.

. We have already noticed in chapter 3 that the apparent spectral density,

':j d. and normalized wavelront vector, F,ofa “perfect source” are the most we

-~ catt expect to determine using an array. Since (2.7)is S = d%F, vectors S

l\: and F may hoth he represented as column matrices such that FTF . We

® now asstine that we have a limifcd number of uncorvelated perfoet sourees

s which produee a field received by a large array, By liniited we mean the

:: ninber of sources. POis less than the number of sensors in the array.

:' I’ N which elarifies our notion of a large array.

::: The CSDAN of the perfeet sources we shall he working with can then he
.
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UNKNOWN WAVEFRONTS 43

represented as a sum of dyads,

- P =t
C.=)_S,S,, (4.1)
p=1
or equivalently,
- P =t
C,=> d,F,F,. (4.2)
p=1

The rauk of this matrix is P, since every vector orthogonal to all the f‘p is
tll\nxlmme(l into a null vector. This statement assumes the set of vectors

F, have no linear dependence whicli would reduce the rank of C This
depends somewhat on propagation conditions and can occur if two farfield
sources and the array should happen to lie upon a straight line. In practice
this ix not a stringent assumption. But before exploring matrix C, we have
fo extract it from the raw data matrix, the data CSDM C,.

4.3

The data CSDNM includes the source dyads plus the CSDM of diffuse noise
supposed to be uncorvelated with any sources. The net result is that it can-
not have a rank lower than its order N. As already mentioned in chapter 3
we can never find an experimental CCSDM with an ezactly null eigenvalue.
The only serious accident which can happen to a data CSDM would be the
occurrence of a negative eigenvalue. This would be unacceptable because it
means the correaponding eigenvector is defining a set of filters which passes
a neqative spectral density on its output. Fortunately this accident cannot
happen to the maximum likelihood estimate of a data CSDM because such
an estimate is the sum of many data dyads. We then have an estimated
noice C'SDM with the right features required by physics: Hermitian sym-
metry and real positive eigenvalues.

It is time now to come hack to the notion of “large™ arvays which involves
the concept of an array possessing enough sensors to surmount the compler-
iy of a system composed of perfect sources plus some diffuse noise structure.
We mnst emphasize that in a stable situation, the smallest eigenvalue of

data CSDM genervally decrcases when the number of sensors increases.
Let us try toallustrate it with a mininnun of mathematical symbolism.
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41 UNKNOWN WAULFRON IS
N
N
1 :':,,-' Recalling that eigenvalues represent spectral density, it is well known that
~ the filter combination derived from a normalized vector which delivors the
mintmum speetral density 1s precisely the combination devived from the
normalized eigenvector associated with the minimum eigenvalue.
o Indeed if we look for the combination derived from a normalized vector
_f v such that vTv 1L the minimum spectral density of the output v7C, ¥
::::: is given by a solution to the type of variations problem previously seen in
N both chapters 2 and 3. The solution is now well known:
s C.v -\ (2
o viey ) o
Y with \ a scalar. Necessarily v is an eigenvector and A is the corresponding
ok eigenvalue. Since we want a minimum output from the filter combination.
o A must be the minimum eigenvalue and v the correspouding eigenvector,
s In short the mimimum ewgenvalwe s the minimum output which can be
fx derived from a normalized combination of sensors. Such a minimization
2N applies to the spectral density at cvery frequency. Let us assume we have
. built a normalized combination for an N sensor array, with [, its out put
and further assume we can obtain an additional (A 1 1)™ sensor with out put
:":ﬁ: [3,. Thereis no reason for Iy to be uncorrelated with By, Thervefore using,
\:: a correlo-filter such as the one described in figure 3.3 of chapter 3. with I3y
s and B at the same places. we know it is possible to reduce the spectral
density of By to a smaller one, 2,. Although the notions of known signal
. wavelront and SFR have vanished. the C'F is not prevented from plaving
_,-_:‘ its basic part. We also remark that the correlo-filter effect does not depend
oM at all on the level of By but only on the amount of correlation hetween 3,
N and . The level can be adjusted 1o a value corresponding to a normalized
':" (N + )-sensor combination because an arbitrary filter is allowed at the SI'R

input of the correlo-filter.
ﬂ.ﬁ Thus we have built « normalized combination of (N 1+ 1) sensors with an
A

-‘,j oulput speetval levcl smaller than the smallcst oblainable with N sensors.

‘ And it is not even the smallest possible one with (N1 1) sensors, sinee s

' 1 given by the smallest eigenvalue of the (N 0 1) sensor CSDNL 1o short
'_:_ when the numbor of sencors ivereases the smallest cigenvalue decrcasos, or
.“ at the worst remains stables Adding more sensors inereases the possibility
:: of having a large span of eigenvalunes with the smallest one heconing, much
:: simaller than the largest ones Asa Lt 18 Teads either 1o a singular €SNI
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with a vanishing smallest eigenvalue, or to a stabilization of the smallest
cigenvalies which are repeated for each additional sensor. In both cases it
ix a test that the array has become large enough to overcome the complexity
of the system of sources and the noise structure.

4.4

Having clarified what we mean by a large array, we shall now assume such
arrays for the remainder of this paper. Since the array must separate
sonrces from the noise and also describe the source wavefronts, it is un-
likely that a simiple linear array, even a long one, could cope with a fine
desceription ol intricate wavefronts. Volumetric arrays are more desirable for
our purposes since they can be arranged to break any symmetry which may
promote linear dependence between the wavefronts of two distinet sources.

We now have to estimate the number of sources, P, and in the absence
of any a priori information it is clear that we will have to gamble. If a
set of several eigenvalues with the same minimum value is supporting the
acoustical background noise (this is improbable) the difference between the
data CSDM and e, In.

Cr : (111i11i1V - és (44)

T

i~ a singular matrix of rank “.V minns the number of equal cigenvalues ¢,,;,.”
Here o, 18 this minimum (‘igg‘nvalue and I;V the unit matrix of order N.
It is then possible to consider C, as the perfect sources matrix of (4.1) and
(1.2). Unfortunately there is little chance the noise structure can be simply
deseribed by Iy. Several more elaborate approaches have been suggested
191 123] which are all smart, but all based on some arbitrary option.

The principle behind the above approach is a parameterized noise CSDM
whose general form is known but where several parameters are left free, par-
ticularly a scale factor. Such a parameterized noise CSDM may be written
as

M - aG(a.b) (4.5)

where @ is a scale factor. G the general form of a normalized ('SDM, with

a and b as lree specific parameters. Then in the difference matrix

c, ¢, M. (1.6)

L. ALy
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the values of the parameters . a and b, are varied to obtain the lowest
possible rank of C,. In this particular case the rank is N 3 but if the
general noise matrix G is really close to the physics of the situation it might
well happen that the rank of C, will be still lower. We will not conmment
about the computing ditliculties in solving (-1.6) since it is already done
the papers by Bienvenu and Kopp [19.20.23.27]. as well as by others 261,

If the discovery of a nose matrix best fitted to the real world should
prove to he ditlicult. a generalization could be suggested where G wonld
he replaced by a sum of weighted noise matrices corresponding to different

structures of uncorrelated noise. For example

C‘r (mm.I..\' rTIGI(‘II-I)I) (T'_‘G'l(”ﬁ-]"l) (-1.7)

ix one possibility in which all the free parameters could be adjnsted 1o
minimize the rank. Again. the success of representing the noise matrix in
this way is reflected by the degree of rauk reduction in matrix C.. As we
fry to increase the number of noise matrices. a natural Himitation shonld
appear in the finding of insignificant scale factors a. a test that we have
exhansted the possibilities of noise representation.

Anyway the field is wide open to improve such methods or suggest other
ones, and experience will probably bring reliable simplifications. For those
who immediately need any method, the only resonrce is to carefully study
the etgenvalues of C,. listed in decreasing order. The smallest ones may be
so small that they could be considered negligible. In other cases one can de-
fect a sharp difference between a subset of large eigenvalues and a subset of
stall ones. I’ would then be the number of large ones. I need he, nothing
prevents us from building a parameterized model of the generalized noise
matrix which is dependent on several free parameters. 1.e., aGlab....).
What has been suggested requires minimal assumptions because only the
general form of the noise spatial structure has to be postulated. Neverthe-
less. as mentioned in section 4.1, these assumptions have 1o be obtained

from total ignorance using a priori knowledge.

4.5

The procedure for determining the matrvis. Cooof the fully coherent spictiad

sonrces requires o parametric model o climinate the second order nose
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r - statistics.  Any further processing of matrix C, can now he qualified as
T “high-resolution™ with regard to the “perfect” sources. Matrix C, is bound
f o the source vectors S, by (1.1). The problem is to determine whether or
P not we can explicitly find the vectors §, when C, is known. See references
> N2
' Since the order of C, 1s .V and its rank is £, there are P nonzero eigen-
w values and the corresponding ecigenvectors describe a P’-dimensional sub-
: space of the V-dimensional space. We will now show the wavefront vectors,
S,.. also span the same P-dimensional subspace. Inthe (N - P)-dimensional
X 3- complementary subspace the eigenvalues are all nulls so the associated
- cicenvectors are indeterminate which we shall find to be unimportant.
" The set of nonzero eigenvalues. in decreasing order, is:
)
ald f]('_)....(p....f[-’
' . . . . .
' ‘ and the corresponding normalized eigenvectors (each a column matrix with
[} T . . 3
N components, like the §,) are:
S lil.iig....ﬁ,,....l—ip
i b
\ with the nsual orthonormal conditions:
3
Co i, -l
. i, - 0, pra
.
. ! Then matrix C, may be written in canonical form as justified in appendix
[y b . I,‘
P
o] .- .. . 1,
' n‘ 1 g o
N C, L €p (U, |, (4.8)
- ‘~ p:l
' i
' - where the [lipli,,] are dyadics of the vector u,. Comparing with (4.1) we
Y \.’ .
N can wrrle,
i r P
g . ..1» -
. - N o et ‘
n L S,S, N ep |, (1.9)
Lt p o poi
K~
q Loth <ides are the same matrix. If we now look at the transforn: of vector
: : !
. .. we have
Lo P ot P ,
. - -~ T - . .
. L S, (S},ul ) L U, (u),u, . (1.10)
¥ . po 1 po !
'Y
A
~
1)
) ~
¢
o ] ~
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o
N where scalars are shown between parenthesis. Because of the above or-
Eain’s . . . . . . .
sl Jhonormality conditions between these u,. the right side of (-1.10) is rednced
] . e . . ve . . .
,'".-:./ to (). Therefore vector wy appears as a linear combination of the vee-
'(3' tors S,. As a consequence Wy necessarily belongs to the subspacc spanned
ol hy S,. The same could he shown for every u,. Conversely the unknown
) - , . . . P
T S, belong to the P-dimensional sihspace deseribed by the known u,. This
“--l!-' . * ' v . o~ 3 . . ’
T is the first important feature of the vectors S0 it is not the only one. In
r-:':_’ . : . ' .
e this subspace the S, are bound by several other relations to he discussed
B next. Incidently, the above discussion disproves a possible misconception
N that individual sources can be described by individual eigenvectors.
A .
(o
B\,
e
v
.\k": 406
o Things will be easier if we accept a preliminary *theorem™ which ix demon-
LY . . N . . 3 o
TN strated in appendix F. Let us consider a set of I’ vectors V, desceribing a

I-dimensional subspace within an N dimensional veetor space. and also a

LS
l" ‘.'.L'

diagonal matrix 11 of order N huilt as follows:

',
'-

I

e e

P rows

»
‘.

Thel

{11

-

f.'," L
_—
=

N P rows

'y
3,

-
¥

[ ———

0

P

[N

The matrix 1T mav now be written as a snm of dyads,

7

'y '."v s %

P

r 4
ii= Y v, vl (1.12)

p- !

-

"®

.
*
PR

x
v

where veetors 'V, have the following features:

»oxe
i
I}

. Ounly the first I components of cach Vo odilfer from zeras Tnoother

»
“

words vectors Vo deseribe a -dimensional subspace spanned by the

AY
KT

first I axes of the fmll Nodimensional space.

4S,

2
.
t

-

The V, will he chosen ta satisfy orthonormality conditions,

\'-';i_V,, I \:i\r",; h.op .
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This being accepted. we know that the matrix C, can be written as
: ¢, - UBU! (4.13)
u {see appendix ('), where E is the diagonal matrix of eigenvalues, ¢, in
h decreasing order with the last (N - P) ones being null, and U is the N-
- dimensional unitary matrix whose columns are the normalized eigenvectors
- of C,. set out in tl e same order as the corresponding eigenvalues in E.
: Although the last (V- P) columns are indeterminate they are arbitrary
- cigenvectors and obviously U]LU = In a relation specific to unitary matri-
- ces. {Iy is the V-dimensional identity matrix.)

Since the matrix E is not invertible let us consider a diagonal matrix of
i ™ ~ 1 . — . .
e real nnmbers, D - D7, obtained from E by replacing the (N ~ P) diagonal
- zeros of B with sonie arbitrary scalar, here chosen to be 1. It is clear that
. we can write,
e S
Z E =D:IlID* (4.14)

where D is partly composed of the eigenvalue square roots. Ilence, fol-

- lowing ((1.13).
¢ S GRlEs it

C, - UD*iiD: 0", (4.15)
e which may be solved for 11 as follows:
- o RN
U'CU = D:lD=,
!_ D iofc.ub - i (4.16)
- Bt we know that,
é, =Y g,,ﬂp, from (4.1).
N. p=1
a Then sinee DU and 1i are common for all S,,. we have
.": .. P‘ ..o 1- . -t .1
) N [D *U s,,} [SPUD J (117)
11
- [
':'. ',4" ) o .
v, D 'Uls, (1.18)
o |
|
. @
._il

e .
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then we have
. Fo -
m=>vVv,yv. (4.19)
p=1
Therefore the Vp have all the features listed in items | and 2 at the

beginning of this section. We can then derive features of the S, by solving

(-1.1R). Since U]L ~ U " (1.18) vields
< T

S, =UD?*V, | (-1.20)
which expresses every S, as a function of C, and of an N-dimensional vector
V, gifted with the features discussed above in items [ and 2.

Since only the first P components of V,, differ from zero, the same

—, el - . . REE S
must be true for vector Vp = DV, The diagonal elements of D from
the (P 1 D)™ to the N™, those which had been arbitrarily chosen. in fact
disappear. Matrix U is made of column vectors which are the normalized
eigenvectors of C,. The indeterminate cigenvectors are neutralized hecause
. . s "', L .

when multiplying U by the vector V, the elements of U from the (I’ } 1)

r . . . iy
to the N column are always multiplied by the zero elements of vector V..

p?

Equation (4.20) may be reduced to its essential components,
S, = U"A"X,,. (1.21)

where:

RS A S f
U" is the rectangular matrix (N rows « P

columns) whose columns are
the first I’ normalized eigenvectors of C,.

1 1
I AN . . 5 5
A" s a square (0 P) matrix whose diagonal elements {7 ... ¢j b ave the
square roots of the nonzero eigenvalues of (7, arranged in decreasing
order and corresponding to the eigenvectors of U,

X, 1s a P-component vector (column matrix) whose components are the
first 7 components of V.. The set of X, is gilted with the same
features listed i items 1 and 2 as the set of V,.

Fauation (1.21) 1s coherent i the sense that both the Jeft and right sides

should he cobmmn matrices with .V rows e, dimension (N - 1), Indeed:

ey o4 . .

U i« (N Dy
A ey,
X, s (0 0

/

- maw L P S TN Th "™ e p .
I R
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so the final result is (V % 1) as expected.
There is a bit more to say about (4.21). When computing the eigen-
vectors of a CSDM, we can get each of them ouly up to a phase factor

e P
exp(io,). If we choose one 1)09911)16 determination of UT. denoted by U,

bl

the most general expression of U” will be
U’ - Ure” (4.22)
here ¢ is the diagonal (P ~ P) matrix of the phase factors. Particularly

(! Ip. where Ip is the identity matrix in a P-dimensional space.
g . . = S PTP TP . .

I'his gives (1.21) the form §, == U, " A X, or permuting the two diagonal
matrices,

= U APe X, (4.23)
Now the specific features of X,, necessarily react on the vector Z = @PX,,.
Sinee XIX,. 1. then ZIZP = :[ (( P)f b ) X, = 1.

e TR _ AV
Since X!X, -0, p =gq. then ZIZq = I
These important features have heen conveyed from vectors V to vectors Z
throngh vectors X,, Therefore, ZP is the p"-column of a P x P unitary
malrir in the P-dimensional subspace of the first P cigenvectors of the
(9L

Ftunately

T TTipepa
'S, = UJA Z,J (4.24)
which expresses every S, as a function of C, and a partly arbitrary vector,

gifted with the features mentioned above in items | and 2. The fundamental
equation (4.24)

can be visualized as helow:

: 0
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A::,)
N,
A\ L.et us have:
]
“ tl ;
N wy  the »n'™ component of iy, with 1 < n < N,
\ ok the K component of Z, with 1 <Fk< P,
N Spn the nth component of S,
-«
-‘j }‘
\‘.4 (7). — €
>
L - .
N I'hen (-1.241) hecomes
. I r
w n 3 3¢
:,J- Spn = S U Ok Zpk |- (12’)
e P
el .
o One can remark that the n'™ component of the S, depends on all the com-
Q% . 7 . .
p> ponents of vector Z,. Therefore any s,, depends on all arbitrary scalars
. which could be found in vector Z, when building the arbitrary unitary
QS matrix Z. Furthermore, s, also depends on all the eigenvalues.
o~
,"
‘v
)‘i - 4-7

The first conclusion to be drawn from (-1.24) is that an exhaustive use of the
CSDM s not enough to determine the P source vectors. What is lacking is
V(P Py unifary malrix Z whose colunins are the partly arbitrary vectors
Z, which are necessary to determine § Using a priori information we have

r -

C A X 1 -
R

)
. .

o

to choose a matrix Z such that ZJ[Z = Ip

o,

ﬂ.
Al . . . .
- One may wonder why a unitary matrix is needed. The physics of this
> point is llustrated by figure B.l in appendix B. As mentioned there, if
’:; the matrix of flters, G, is given by the normalized eigenvectors of C,, the
® P nonzero outputs (the zero ones yield nulls) are not correlafed and their
° oy . .
- spectral densities are respectively the known eigenvalues. On the other
- .
- hand we remember that the P sources are postulated to be independent.
- That could lead one to think that we have at last disentangled the sources
b from each other. Unfortunately this is not true in general. A pair of uncor-
e related outputs can be thought of as two mixtures, each with contributions
K7 from all of the sources, in which partial correlations coming from of one
L~ . . . .
o sorree oceur in bhoth mixtures. But it happens that these partial corre-
A - . ryv . .
q"- [ations exactly cancel each other. Therefore cach cigenvalue represents a
- . . . . .
¥ combination of all I’ sonvee spectral densitios.
s
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Now since the eigenvalues are known, there is a posibility to go a bit
further by whitening all the P outputs, thus flattening the spectrum to a
uniform density. This is the purpose of matrix AP in (4.24). Thus, the
most we can obtain using only the CSDM, are P spectral-normalized mix-
tures of the sources. That explains how the separation of sources requires
assinnptions which can be expressed as a unitary or “rotation” matrix.

One case where a solution can be reached without additional assump-
tions occurs when 2 = 1, where obviously the wavefront is the eigenvector
. the spectral density ¢,. and the only source S,. The matrix Z is then
reduced to its first element, whose modulus is equal to 1, and therefore
corresponds to an arbitrary phase factor. This is of no consequence since
a wavefront represents the relative phases of its components and is not
changed by a phase facor common to all the elements.

Another hold case where a solution appears from (4.24) occurs when the
array is so large and super-resolving that all the source-vectors are virtually
orthogonal. Then the eigenvectors are the wavefronts and the corresponding
cigenvalues are the spectral densities. Under these conditions the matrix Z
ix reduced to a diagonal matrix of arbitrary phase factors, one per source
vector,

Before discussing the general case 1t might be interesting to check that
(1.21)is compatible with (:1.13) when the useless components of the (N —P)-

dimensional complementary subspace are removed from matrix C,. If we

CXpress S,S[Jf in the sante form as (4.24) we get
2 ot PPy _.J(__], — p J( .
S, 8! U AZ,Z,A" (U,)) . (4.26)

The matrix Z,,ZI is the dyadic of Z,,. Now

e P — ,<.i.
C. = Y. S,S;
]7]
= A \)- S SN | o
U, Nz,z) | AT (U] (4.27)
pol

The matrix between brackets is the adenfity matrix of order P Indeed any

"
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¢
N column vector v is transformed as
L P t P ~1
- Lo . R
k NZ,2,|v=> 1, (va> : (1.28)
o p=1 p=1
"
o~ The scalar (Z,v) is precisely the “projection” of v on the unit vector of
A . : . . . o
- the pt" axis. So (4.28) simply means the transform of ¥ is the vector sumn
of its own components along the I axis, and therefore v ifsclf. Henee
> — P TP 21 24 1‘ .
! C. - Uy [A"] [ug]. (1.20)
.l
- where [A" 7 is the diagonal matrix of the eigenvalues E in the only subspace
Spo, i . - .
4 where they are not nulls. Uy is the unitary matrix U reduced to the useful
~ eigenvectors. Now we note the form of (4.13) and (-1.29) are very much the
“~
~ same.
X~
1%y
19
/ 4.8
{
9,
- rEa . N .
¢ I'he problem is now to correctly assess the degrees of freedom required
J by the “arbitrary”™ unitary matrix Z in order to determine the necessary
o . . . . «
M a priori assumptions. While enough assumptions are needed to compute
o the S, using the full power of the array, we wish to avoid overconstraining
the problem to preserve the information contained in the data CSDMN. To h
»
) do this a unitary matrix (P~ P)is built of P’? complex scalars which are
! . . 2 .
- equivalent to 2% real scalars. The constraints hetween these scalars are:
1. Every column must be a normalized vector giving one real scalar
L relation per S, for a total of P’ relations.
,
K- 2. Every column must he orthogonal to all the others, which corresponds
- ) : |
K to P(P - 1)/2 relations hetween complex numbers and therefore a
¥ total of 177 1) relations between real sealars.
¢ , oy v . :
X Sa the 207 veal scalars of Z are honnd by I? relations, and the arbitrary
g [reedom within matrix Z would seem to be dependent on 77 real sealars,
2 However we have seen that the plhase-factor of cach column Z, of Z plays no
:' role in our analysis thus allowing one real sealar to renrain undetermined.
{
t
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~ As a result the number of real scalars needed to get all the §p is P2 - P =
P,
If we look at the set of P vectors given by (4.24), each corresponds to N
p complex scalar equations, or equivalently to 2N real scalar equations. For
/ the whole set we have, 2N P real scalar equations. What is the nuimber of
. the nnknown parameters? We alveady know there are P(P - 1) real scalars
::: introduced by the vectors Z,,. gathered in matrix Z. On the left side, all
h 2V P scalars forming the components of the S,, are unknowu.
- We then have more unknown parameters than equations. That is why
o tolal Jgnorance about the S, prevents any solution to emerge, even with
the most extensive use of the CSDNL. Something has 1o be assumed about
o the S1': hut any assumption should provide precisely P(P — 1) real scalar
o cquations between the components of the §p_ More assumptions would lead
s to impose specific features (relations hetween the elements) on both the
- C'SDAL and the related matrix US)AP thercfore causing conflicts between
z the experimental results and the assumptions.

Belore trying a general approach using the minimum necessary assumyp-
1inn< i' is interesting to illustrate the previous development with the case

. \
0y

I A nnitary matrix of order 2 is made originally of 8 real scalars. But
- the constraints ZTZ Ig lead to the classical writing,
- 7 ( cos( ) sin(y*)exp(--16) exp(1¢,) 0
sin{ v )exp(i6) cos(v) 0 exp(idy)

where only | real sealars remain. The diagonal matrix on the right side
corresponds to the phase lactors of the lirst and second columns. They can

i remain arbitrary so that only 2 real scalars * and 8 have to be introduced
o i the vector equations.
It must bhe observed that both scalars are present in every element of
%f: the matrix and particularly in all columns. The generalization of this for
o lareer values of 7 1s a harbinger of computing difliculties which arise when
e determining the source vectors as functions of the arbitrary scalars. In the
I general case we are confronted with finding the nuiaber of scalar velations
hetween the components of the S which are necessary to complete the set
W of equations (1.24) with exactly as many unknown parameters as there are
o available equations. Not violating this condition with rehable, compatible
assimplions is hopefully a way to solve the problem of finding source vectors
o wsrivg Ahe full array power.
.~
i
-
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'\"" . .,-.Jo! ORI e e el T T s e ettt e, "t"n“ “'u.'&"w"h"h”'o"' h " '-.‘ '..Q. ':"‘




Wﬁv"ﬂm -

b s
pa
Ca v
s
\J‘\

3
"
\"."
NN
06 UNKNOWN WAVEFRONTS
‘-::-, For the case P = 2, (4.24) hecomes:

NP
-(':-", 1
W' = P cos(y*)

t ) SI - U() 1 K " i 0

" 0 & sin( ¢ )exp(id)
s v (-1.36G
N & p o 0 —~sin{e)exp( f)

o S, - U, L j

TN 0 2 cos(y")

‘.“. ™
AN - .

These two vector equations between the components ol S; and S,. vield 2V

K complex scalar equations or 4 real scalar equations. On the left side of
oA (-1.30) the unknown parameters to be computed are precisely the 1.\ real
N scalars of the components. On the right side, the unknowns (unavoidable
‘s . . . ) Ia B
20 whether interesting or not) are v and 6. There are two more unknowns
[ than relations so we must either:

i . . o . .
"'r‘\- I. Arbitrarily forget about ¢ and 6 by deciding v 0 and assume the

ALY two source vectors are orthogonal (very large arrays). a rather crude
-. . )

N procedure.

1 ..‘

f 2. “Invent™ 2 real scalar relations between the 2V real scalars of the
PN source vectors. This is not very stringent and is exactly what is
‘2 . . .

y required to reach a solution. NMore assumptions would be too much

and would require compatibility with the experimental ('SDAMI.

N
RS
\ » 4‘9
“n.,."\
AN
o N . ,
N Let us first remember that we are considering arrays of sote 60 sensors or
>, . . T . .
o more, and P2 up to 20 or 30. Clearly, all the assumptions made in previous
- V. 13 | ] . . e of « S for on .
° sections about the source vectors are of the “overinformation” type, as
Py compared to the minimum suflicient assumptions. For example the “plane-
- . . ¢
,\C. wave assumption” of chapter 2 corresponds to a source vector structure
144 Salld . . . . . .
,:‘ v with a complex amplitude and two angles for the direction. A total of |
. g . . . . .
‘:L real parameters are needed for this vector deseription. It actaally imiplies
n 2N bamplicit relations hetween the 2N peal sealars of the components
ST giving a total of P(2N 1) relations for all the source vectors which exceeds
e . . : . .
A the PP 1) strictly necessary relations compatible with the experimental
O et ~ . . [ . . .
o CSDM C.. Sometimes the ninimum relations are practically anticipated,
A Axan example, for a linear arrav of eqrispaced identical sensors, the souree
Ly
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vector CSDALs of the Toeplitz type.! The Toeplitz criterion helps separate
the source ('SDN C, from the data CSDM C,, which coutains unwanted
noixe. thus giving an estimate of P (the problem is to find the largest
possible Toeplitz matrix contained in C, ).

Vezzost [25] has given a full solution under less stringent assumptions.
For a source vector, only the amplitude of the components is supposed to
he constant. This common-value amplitude and the phases must then be
determined. The assumption of a constant amplitude for N components
corresponds to N - | real scalar relations for each source vector and P(N —1)
relations for all sources. Although this is a big step forward, it is still
overconstrained since it exceeds the minimum P(FP — 1) relations. Again,
the source ('SDAL is somewhat specific thus giving a clue for the estimation
ol [,

Other examples of this kind could be proposed more or less hased on
intuition about specific situations. True, it is painful to refrain from sim-
phifving an enormously diflicult problem by adjusting the CSDM to a given
shiape. and then further refrain from blaming any discrepancies with the
experimental CSDM upon a lack of spectral and cross-spectral density es-
fimation accuracy. CSDM shape adjustiment becomes even more tempting
hecanse it vields an estimate of P, and we must admit that in section
.1 we conld only derive such estimates from conjectures about the set of
cicenvalues. But this is only transferring conjectures from one place to
another. Clearly compromises may be successlul in some situations. Still,
adjusting a problem to its solutions leaves us uneasy. Anyway, for better
or worse we have chosen to sail. so we shall now try to find a minimun set
ol assumptions which balance the equations with the unknowns.

4.10

Onr goal 1s now to suggest something about the source vectors or the wave-
fronts themselves fand not about a model of the medium since we do not
pretend to focalize). I should he a “minimuam™ assunption which is both
complete and reliable thus allowing us to use the fnll power of the array as

"A constrant tmposed on the G matrix by the “plane-wave assumption”™ made for any
Vosensor array, has some internal order sueh as the Toeplitz matrix, onlv more dificult

| FE] Npress,
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N expressed in the CSDDM through the set of vector equations (4.24).

N The assumption proposed here is: « source veetor, which is not nee-
L cssartly a plane wave, can be described as a coherent sum of plane waves
N across the aperture of the array. Such a superposition should approxi-
- mate the source vector more closely when the number of plane waves is
- large, but this number is limited by the number of sensors in the array, V.
. This assumption may be disputed, but it seems to deserve the qualilication
B “minimum’” because as we shall see later:

I [. The number of plane waves is actully large in most of the situations
: we can consider.

W
! .
' 2. The geometrical significance of a plane wave is not here an ahsolute
7 preliminary requirement but is only to be a posteriori controlled.

"'_’, The last remark gives the wavefront model large flexibility. If an ex-
y pected “plane™ wave is found to be non-plane (we shall see how), it still
o contributes to a parametric model of the wavefront, If the planc-wave fea-
' ture is confirmed. it gives a clue for localization. That ts why we shall name
- the model a coherent sum of “conditional plane waves.” ('PW.

. Thinking of lavge fixed arrays. let us now restrict ourselves to an array
: with .V point-like sensors (as compared to the smallest wavelength involved)
. which have a flat frequency response over the useful bandwidth. Since the
. array geometry is completely known we can define a reference system in the
X real three-dimensional space with a point origin and three orthogonal axes.
- The Cartesian position of the n'™™ sensor is then given by a known veetor
e which specifies the length and direction from the origin to the sensor. v,,.
- On the other hand an incoming plane wave is completely described by
p a normalized 3-dimensional vector a, |a| = 1, pointed from the origin
o fowards the plane wave (opposite to its propagation direction) representing
N two angles (bearing and tilt). This vector docs nof depend on frequency
b and is unknown in our problem. A “complex amplitude™ A representing
b the amplitude and phase at the origin-point is also nnknown and frequeney
. (l('|w||(l(‘llt.

. Very classically the phase factor corresponding to the travel time delay
3 from the origin to the sensoris expi2m(e, - o)l where the dot =7 stands
N for a scalar inner-product and where the veetor & is the vector ¢, mea
o sired i terms of waveleneths, The “leneth™ of vector & is proportional
)
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to frequency but remains completely known in every frequency bin. As we
have dene throughout this paper, we let the frequency dependence be 1m-
plicit. Therefore &, is a known vector in the 3-dimensional space, while for
a “true” plane wave, o 1s unknown. frequency independent, and represents
two real scalars. For a CPW_ vector a will be computed in every frequency
bin. Only a posteriori will the C'PW be verified as truly being a frequency
mdependent plane wave,

As for the complex amplitude .1, obviously |.1] is the same on all sensors
and at the origin. [ we were to represent only one plane wave, A could be
a real positive scalar, and the above phase factor would express the phases,
rebative to that of the origin. But since we shall deal with a sum of coherent
pline waves, we have to describe the relative phases of several plane waves
at the origin, and 4 has to be a complex, frequency dependent scalar. So
then 1 depends on 2 real scalars, amplitude and phase, both unknown in

cvery fregnencey bhin, The expression for a plane wave on the n'" sensor is
ey

Aexp 27 (&) - )]

and depends on 1 real scalars. While two of them should not be frequency
depensdent this may not alwavs occur.

4.11

Anv sonree veetor S deseribed as a sum of I, coherent plane waves, vields

]'h

on the n'™ sensor a component,

K.
N7 Qi@ A
D Agexp [2mi (W, - )]
k=1
For some particular source vector S, with a specific number of CPW, K,

the o' component is given by

K,
S Nodexp 2m (L, o) (1.31)

I !

Koo not be the <ame for all S, hecanse cacli sonree may have a diffevent

rodtipath arrival stractares This allows ns flexibility in the way we express
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any loose a priori idea we might have about the relative complexity of the
source vectors. The component s, depends on AR, real sealars. Wlhien
we follow (-1.31) from one sensor to another only the geometric vector &,
varies. but it does so in a perfectly known wayv. Therefore for cach of the ‘J
compouents, we have a set of A, nnknown real scalars. The phase of 1
for a given k. is the same on all sensors and expresses the relative phiase of
the & CPW building S,..

Since an S,. cannot be determined better than within a phase factor, we
could. in principle take an arbitrary phase for one CPW_ for example 1.
This would reduce by one the number of unknown real scalars, However we
shall not do so. because we are going to compare this parametric expression
of §,, with that given by (1.24) or (1.275). These two expressions nimst only
differ by an unknown phase factor since thev cach represent the <ame S,
except for the phase. Thus we must maintain a free phase factor for 4 10
represent any possible phase difference bhetween the two expressions for the
same S,,. As a result the number of free real scalars in the CPW model is
confirmed at AR ,. The total of CPW for all the S'P is \owith

r
NN (1321
ol

and the problenyis to assess the value of A by comparison with (1200 The

latter. as we remembers already tnvolves el 1) free real sealars,

4.12

At the end of section L6, we have already noticed that the o™ component
()f S‘, fl'()lll (l._)]) ill\'ul\‘(‘.\' H” HIP ('nlnl)nnt‘n'.\‘ ()f. ZI‘ ?ll!(l ‘hl‘l‘(‘[.()[‘(‘. th(\ <ante
el 1) free real sealars of matnx Z (obvious in the 7 2 example of
section -1.8). Now the comparison. for the same S,, ol the CSDA derived
expression and the CPW o nodel vields:

I veetor equation

N complex sealar equations

2N real sealar equations,

For the whole et of S we rave 2N real sealar equations. Phe nunmbher of

free real <calars to he derived from this <ot of cquations o~ th - 0l
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and the value of N ois given by 4K + P(P - 1) = 2N P, or solving for I\,

NP PP
I B (1.33)
2 4
hierefore for a given P. the number of available CPW is obviously growing
with N ( the array power) at the rate of P waves for two more sensors,
licniee, one more wave per wavefront.,

Perhiaps less obvious, N is also growing with the number of sources I,
wcithin the limits of its possible variation for a any given V. Indeed the P
derivative of the vight side of (£.33)1s (N — P)/2 + /1, a positive definite
mmber. It is an important aspect of this assessment that the whole set of
~onree vectors is described better when there are more sources. Later, we
<hall come back to this remark. Nevertheless the mean value of CPW per
somree decereases as I grows. Though we have mentioned that the ('PW
mav not be fand cannot always be) equally distributed, a rough estimate
ol the power of the array per source vector is given by the integer nearest
foo

AR B (4.34)
r 2 1
This number decreases with Pooand the P o dervivative of the right side is
[t which treans that for -1 more sources the deseription of each individual
wavelront is redieed by only one CPW ., an exremely slow rate.

Before giving examples, we <hall first make another small assumption:

N s ossunied fo be an creen number, Considering arrays ol 60 sensors or

more this is anvthing but stringent. Equation (-1.33) reads
NP - (-1.35)

with V2 aninteger. For i to also be an integer. the even number P(P —-1)
st be a multiple of 1.
[ ot 1 see a few examples where this condition is fulfilled and afterwards

whiat happens when it is not:

N 600 20 henee W 505
Fhe whole set of wavefrontsis represented hy 505 CPW. There cannot
he the <ame nimber of wavefronts per souree. but the mean power of
the array can be represented by the integer nearest to 505 20, namely
-

).
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2. N =62, =20 hence I = 525
Adding 2 more sensors (N an even number), the whole set of wave-
fronts are now deseribed by 200 more CPW, one per source. Indeed

the integer nearest to 52520 is 26.

3.8 260, P = 24 hence I = HR2
C'oming back to 60 sensors but with 4 more sources as compared
with case 1. the global situation is described by 77 more CPW. Alore
sources give more information as conld he expected. Nevertheless,
per source. the integer nearest to H82 24 is now 24, [t is remarkable
that 4 more ources have stolen only one CPW_ as compared to case

L. for the descripton of a particular sonrce vector.

4.V =60, P = 22 hence K = 545 1.2
Let us take now an intermediate example where the even number
P(P - 1) is not a multiple of 1. For this case the integer nearest to
545722 is either 24 or 25 and the power of an individual wave{ront

description is about the same as in cases 1 and 3.

What is the nieaning of a “hall-C'PW™7 It means that 515 CPW is a Int
too miuch and actually brings into the svstem of real scalar equations too
many free real scalars for the number of equations. One of the 515 CPW
has become “half-known.” depending on only 2 free real scalars instead of
1. We then need some additional a priori information. One can build one
of the 545 CPW with a known direction vector. a. which is not frequency
dependent. a frue plane wave, The complex amplitude remains undelined.
To choose the direction we can rely on any loose a priori idea we might have
on the significant presence of a particular plane wave in the deseription of
one of the wavefronts. [t is not very critical. An error would be revealed by
a small corresponding amplitude in the final computed solution. One could
say that the stringent assumption of chapter 2 has now been submerged as

a very small part within a flexible solution.

4.13

The mumber of free real sealars available to deseribe one wavelront is
I
])

LAY I 1. (1.36)
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[t Jdoes not seem preposterous to say this number is “large.” In the previous
exambles it is about 100, more precisely it is:

101 n case 1.
[O5 1 «ase 2.
97 1 cese 3,

99 1 case |,

This sort of assessient does not help us at all in determining the clustering
of these scalars for a sequence of coherent CPW. But it does help us obtain
a ronch evaluation of the parametric processing power. For an eflicient 60
<en=or array. it seems sensible to associate a number of “perfect”™ sources
between 10 and 10, The comparable figures are then:

free scalars for 10 sources,

N1 free scalars {or 10 sources,

which exhibit a ratio of only 0.73 scalars for -1 times more sonrces. Is it
voing 1oo [ar to say there is apparently never a shortage of free scalars and
their nmber varies only slowly with the number of sources? Both features
arce those of a cood parametric representatiorn.

Nevertheless it must be emphasized that in order to process a sel of
10 worees according to the procedure in section 1.4, we must first find
a parametric noise model (no wavefront) able to “eat™ 50 eigenvalues out
ol the 60 x 60 data matrix C, and then get the source matrix C Of
conrse a large array might be kind enough to make the subspace division
nearle obvions depending on the eigenvalue spread. Still the determination
ol i< the weak point of the method. even though we might have some
chies tdoubttul). All of these difficulties arise from trying to avoid faith in
stringent wavefront assumptions. But the assumptions we have made arve
velatrecly weak. Instead of direct statements about the S, themselves, we
make indireet statements abont eigenvalues, which are each only a small
part of <ome S, component [see equation (4.25)]. Also we have not yet
n<ed cither the frequeney dimension or any experimental data about the
<preading of the cigenvalines obtained under controlled conditions,

The analvsis of the data matrix C, mmnst he performed in hundreds of
[regneney bins. Certainly in an operational sitnation 7 is not expected
tohe the same evervwhere within the whole bandwidth. Different sources

s transmit components in varions different sulvbands. Nevertheless,
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when following the same eigenvalue across a few neighboring bins, some
stahility or smooth variation should he observed. especially for the large
bandwidth sources considered here. Fast, erratic uctuations should dis-

qualify an eigenvalue as heing representative of the set of § .

On the other hand. experiments with I controlled sources are needed
(and are already being done) 1o get xome data about the actual spreading
of the cigenvalues and the reliability of varions methods of estimating the
value of ' (as if it were nuknown). Ax small as we have left the part of
estimating £t must be backed by experimental data even thongh there is
no universal and definitive criterion to be expected. I short, the behavior
of an eigenvalue across a few adjacent frequency hins shoald contribute ta
its acceptance as heing representative of a set of source veetors and therefore
indicative of the number of sources. This is apparently the corner stone of
the eigenvalue approach.

The a posteriort verification of a CPW as a true plane wave mayv he
tested by the stability of its direction vector o from one frequency bin to
anothier. Probably only a few vectors will qualify for true plane-wave statns,
But none of this invalidates the validity of the parametric representation.
In fact, trne plane waves are possibly ol interest only for a fast, obvions
solution to the localization problem.  Again, across the handwidth, we
should observe no erratic varations of the o, and A hound to source
vector S Cwhich are liable to call into question either the S, or the munber

of source vectors, Indeed. e verything vclics on the eslimation of 1.

A Luee compntational effort, probably not now available in veal time,
i= the coxt to be paid for the implementation of this process. The hasie
mathematical problem to he solved is governed hy ((1.24) or (1.20). and

(1.31). expressing the source vector S, in two different ways. When solved

it vields the source vector S, along with the apparent spectral density.
. . . .
d, S:{S,,. and the wavefront F, - d,*S,. So in principle the problem
of sonree identification with unknown wavelronts is solved within the sense
given to the term identification™ at the heeinning of this paper. Lot ns
now remerber that sinee the processis adaptive, the whaole <alntion is valid
for o time duration 17 and hable to he vefreshed every 1 secands or <ooner.
Asin any vich parametrie representation with such enormons< flesilaline, the
ceotmetric and physical sientficance of <o many free pavameter< s ot cern

nnportant.
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4.14

We could stop this presentation here since we are not primarily interested
in localization. Nevertheless a few remarks should be made concerning the
relationship between what we have done above and the process of local-
ization. First, whatever localization method is to be chosen, it is good to
have a fine description of the source vectors. Second, localization is not
separable from some description of the propagation medium. In fact the
sonree veetors themselves are a description of the medium since euch vector
depends on the same medium model as well as the coordinates and spectral
density of the source. We now have the source vectors which we have been
trving to deseribe while using a minimum of assumptions consistent with
the array size.

Onr present goal is to use the same guide-lines for localization. We seck
free parameters which deseribe the source vectors taking into account the
fact that the source vectors are known functions of frequency. We shall
approach this problem only in a fairly superficial manner. It must be made
clear that what follows is neither a method nor even a t‘lleory. Instead it
i« a conceptnal assessment of the {ree parameters liable to be involved in a
parametric description of the medinm.

We have already assumed that all sensors exhibit the same flat {requency
|'1‘\'|)ull.\'(‘ and are approximately point-like with a known postion given by

D vector, v, representing the three coordinates. We now ad(lifionallv
a<<tme there is no calibration problem and therefore, the symbol S which
s been used to represent a source vector in terms of sensor outpul elecric
voltace, can also he used to represent the sound pressure.

To inelude the principle of reciprocity. the sound field of a normalized
amplitude source, is given by a Green’s function

. - .
G, - G(rpyp s rhag, . oag0.a).

which is symetric with respect to the source coordinates #,.y,. 2, and the
coordinates ¥, of the 0™ zensor: the parameters a0 ag represent

a model of the medinm. Building the Green’s function is generally casy for
very simple conditions sich as a perfeetly reflecting surface or a bottom

rellection with a known impedance, The parameters a, are then very few

and known a prioni. But the Greens funetion rapidly hecomes very complex

for 1he more realistic fields associated with specifie propagation conditions,
‘ Ean)
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.’:;- e.o. diffraction phenomena ete. So usually the parameters and the form of
g the Green's function are obtained from an accepted medinm model. Most
- of the time such models are over simplified representations of the real world
,'.. i which only describe the basie outline of an actual acoustic field.,

> The point of view here is a bit different. We conjecture that it might e
’:-;:: possible to build a general Green's function which involves unknown free
K- parameters. We then try to determine how many parameters are needed
"oty for compatibility with the array size and the recently acquired knowledge
‘ of the source vectors, This is important becanse this number of available
_::: parameters, (. determines the complexity of the Green's function whieh can
R he built. The challenge facing model makers and fast real time computer
-:-.: specialists is the actual building of such Hexible Green's funetions.

~ Parameters a, may be real or complex. [requeney dependent or not. But
o whatever they night bel they are the same for all sources and sensors. Ouly
':.\‘: the sonrce coordinates and the sensor coordinates vary with source and. or
::': sensor position with the latter presumably known. Then the p'" source with
::' an nnknown comples frequency dependent amplitude A, vields on the n'h

" th

sensor, an aconstic field A, G, which is precisely the »
vecotor S‘, »
known only up to an arbitrary phase factor which s that of A, Also

component of
now known from (-£.251  We must remember that S, can he
remember, the frue speetral density of the sonrce mentioned in chapter 3
i< dp N7 while d — §'S was only the apparent spectral densify as scen
through the arrayv. For a given S, we have N complex scalar relations of

T tvpe

AGL s (1.37)

—~
x

o
-

5 %
F

This relation involves | parameters hound to the sourcer [y ooy 2.

which happen to be real scalars, and Q parameters bound to the medinm.

r
L]

C onstdering the whole set of [7 source vectors, we have:
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So. the number of parameters required by the general Green’s function
of the medinm grows with N and P as expected. Nevertheless the full
proportionality to P in (1.38) is somewhat misleading. It comes from the
fact we are supposed to have first solved for the source vectors, hut these
vectors are already an implicit description of the medium. Actually, the
number (Q grows with P at about the same rate as the number of ('PW
in section .12, So we can say that more sources shed more “light™ on the
medinm deseription as could be reasonably expected. All of this suggests
the use of sourers for studying the medium.

From (:£.3R%), the case N — 60, P — 20 yields Q = 1120 which may
seemt an enormons descriptive capacity. But we must remember that we
deal with scalars when describing complex propagation phenomena. For the
localization problem we may only be interested in the source parameters. So
we can “eliminate” the medium description from (4.37) while solving for the
<source coordinates and spectral density. There is no formal guarantee the
coordinates will be perfectly constant from one frequency bin to another.
Only the ultimate fitness of the model to the real situation might make
it <o as a first approximation. But this is also the case for any other
passive localization process. The question of whether or not this process is
acerrrate to the limits of its high degree of complexity, is a matter of further
experiments,

Opposite to the localization problem, we have the eaxperimental study
of the medium with sonrces controlled in both position and spectral den-
sitv. Individualization of source vectors may result from transmissions in
nonoverlapping sub-bands or from the disentangling procedure suggested
i <ections LIE L 130 Once the source vectors are obtained, NP free pa-
rameters are available to describe the model. Reiterating a remark already
made about the continuous plane waves and large parametric descriptions,
the physical meaning of a particular parameter may be less critial when
there are more of theut. Of course, much further study will be necessary to
confirm this possibility.

4.15

As o conclusion for chapter 10 let us say we have at last discarded any a pri-

ort knowledge about a sonree veetor except for the crisionee of o wavelront,
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tested by the fact that the corresponding CSDM is a rank-one matrix. This

is the minmmal requirement for spatial processing to he possible. Exfensive

N
2

. l..,"‘.ﬂ .

experimentation at sea is recomimended in order to determine the extent to

Y

which this fast assumption can be trusted across various aperture sizes. A

::‘_: signal is any source with a wavefrout, a so-called “perfect™ source. Noise is
SN everything else. We are doomed to simultaneously determine all the signal
.-,_:: source vectors in a sort of tmaging process. 3
- In principle the data CSDA measured at the sensor ontputs, C,| in-
—— volves several “perfect”™ sources plus noise. The CSDN of P2 noncorrelated
.\::::', perfect sources is C,. a rank-[” matrix. If £ were larger than N there
:':' would be no way to disentangle the perfeci-source wavefronts from cach

::j:: other (even the knowledge of (j. 1s not enough). For a solution to he pos-

A sible the array has to be large enough for the data CSDMN 1o he the sum of
R 1]1(_‘ p(trl'm't sources (‘Sl?!\l and of tl}<~ noise CSDANL C,  C, l:\:l. where the
SO noise is uncorrelated with any perfect source. From the experimental data

:E‘ of C. the first problem is to derive matrix C, and therefore the number 2
! x.i:\ of perfect sources.

' > This conld be done accurately at the cost of risky betting about the

\_,.: wavefronts if maftrix C, is known (o have a specific forn. Although this
Wi is sometimes done in the literature. we have discarded such an approach.
E:-E Instead, we prefer trying to elimmnaie M. Throngly a careful examination of
S the eigenvalues of matrix C,, we use experience to conjecture how many of
Vit the largest eigenvalues represent source veetors, thus determining the value
_,' of I’. The method is hacked by two remarks:

-I\.~.
,';:::}' [. Gnessing about the eigenvalues is less risky than guessing about the
:.'{ source vectors; since every source vector depends ou all the eligible
o eigenvalues, an error in one of them is only an error within a small
.'1'; part of the final source vector.
':2: 2y (' ce N T o e . ATt (F1 .o .1

< 2. Guessing is less and less risky when the array grows in size.

a R V . : . .
‘e A slarge.” and therefore eflicient array has a wide span of cigenvalnes, from

" the largest to the smallest. helonging to the data CSDAT with the sinallest
7:',:. decrcasing as N inereases. Thus a comparatively vanishing smallest cipen.
{:;- valie is asign that the areay is safliciently large to surmount the complexity

\_-;‘ of the acoustic field which is supposedly heing deseribed correctly, Pxperi-
::-{ ments at sea are required tor checkine the extent to which real avravs falfill
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this condition under operational conditions. or conversely, what size array
might be needed.

I{ the span of the eigenvalues happens to be only a guideline for the
choice of I, other clues have to be used, since we must separate matrix é,
{rom matrix M. As described here, this step is a slightly generalized version
of some methods suggested in the literature. It consists in representing M
with a reliable general model including free parameters which are adjusted
to bring matrix C, to rank P. If the noise model should prove to be highly
reliable (which may well happen for fixed arrays), the choice of I’ may he
alfected. When this happens the free parameter adjustment brings matrix
C, to the minimum possible rank compatible with the noise model.

Besides the existence of the wavefront for the perfect sources, this para-
metric noise model is another thing which must be restored from total
iwnorance,  Fortunately the final choice for P is not very critical, and is
subject to a posteriori verification once the source vectors are determined.
Having determined the number of “ perfect”™ sources. P, and matrix C,, the
next problem is to separate the wavefronts from each other. Apparently it
ix impossible to get the sonrce vectors without additional assumptions, and
the information needed corresponds to the degrees of freedom in an arbi-
frary (I - ) nnitary matrix. Any larger constraint would assign matrix
-('1. specific features which might conflict with the expertmental data from
which C, was determined. While less constraints would leave the problem
unsolved.

Actually we are confronted with an expression for the source vectors in-
volving the gennine matrix C, (its eigenvectors and eigenvlaues) plus some
free parameters corresponding to the degrees of freedom mentioned above
in (1L.21) or (1.25). We must then impose constraints which are just fitted
to the degrees of freedom left in this “C'SDM-derived” source vector expres-
sion. The constraint we choose requires each source vector to he expressed
ax a finite coherent sum ol unknown “conditional plane waves” CPW, with
the number of plane waves exaclly satisfying the available degrees of free-
dom. Sowe et a “CPW-derived™ expression for the sonree vectors in such
a way that when both equations are satisfied for the whole set of source
vectors, we find a suflicient number of scalar equations to compute all the
free sealars in both expressions.

The CPW s a flexible parametric expression which occasionally proves

to he a plane wave across the usefal handwidth. Althongh difhieult to carry
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out, this way of determining the source vectors has several advantages: ;

1. It preserves the experimental data and depends only on the fitness
of a parametric noise model having the flexibility usually associated

with adaptivity.

[

It only imposes constraints on the source vectors which are exactly
compatiible with the array size and number of sources. With the
source vectors at hand. an approach to the localization problem is

briefly outlined.
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Chapter 5

GENERAL CONCLUSION

In chapter 2, while discussing the evolution of increasingly complex spatial
processors, we introduced the concept of Directivity and its natural imple-
mentation via classical fixed beamformers. This classical approach requires
fwo stringent concepts:

[. A plane wave signal coming from a given direction.
2. An extremely specific and unnatural noise model, based on perfect
i~otropy and the ahsence of correlation between any two nonoverlap-
ping elementary solid angles.

The above leaves an insuflicient amount of information to exploit for the
“identiliation”™ of a source by the determination of its wavefront and spectral
density. Here the wavefront is already known and the best signal to noise
ratio is obtained for the particular sensor combination which maximizes the
directivity factor.

When trying to go further, through an estimation of the “noise alone”
on the output of some other appropriate sensor combination, we fall on the
rigidd concept which grants no specific status to remote sources transmit-
ting plane waves from directions other than the signal direction; remote
sonrees also produce noises, or “unwanted signals™ on the “beam™ which
we wonld like to clear of anvthing but the signal. Nevertheless under some
assumptions discussed in chapter 3, it is possible to reach the notion of
“noise alone™ and its estimation. But all such procedures vely on an excess

ol confidence in the highly artificial notion of ommidirectional noise. In fact
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e the Directivity concept does not provide reliable removal of the noise spec-
"::: tral density from the raw data. and is thus unable to reach the realin of
> the so called “hyper-resolution™ systems where the signal spectral density
) is supposed to he totally rid of noise.
"t..-" The next approach to spatial processing is the adaptive heamformer
:_:f for which the signal wavelront is still known (its spectral density needs
;'.: to be identified) but for which ne other assumption is made about t]e
- unwanfed noise, The same status also covers sources with a wavefront (hut
\ different from the signal’s) and diffuse sources with no wavelfront: it 1= all
W'n"_z unwanted noise. Given the signal wavefront, hailding a sensor combination
,\_:r: which preserves this signal (a “signal all pass filter™) is easy. but the output
) . still contains sotme unwanted noise.  knowledge of the signal wavelront
3 also makes it possible to build sensor combinations which do not let the
.\ signal through, even when present. These combinations are the “Signal
‘-::': Free References™ (SIFR). Generally, (N [} SFRs are avatlable from an
:.'.': N-sensor array, and there are several ways to render them uncorrelated
oS using processes which are the physical analog of the diagonalization of the
o SFR cross-spectral density matrix (CSDM). Nevertheless the SIFRs remain
‘.,_ correlated with the noise gathered on the signal oufput.
N In this paper a way is described to progressively subtract contributions
.\f. from the noises that were adaptively derived from the SFRs. Strange but
'.-f true, these subtractions are both those of noises and their speetral densities.

»

So that, in a repetitive operation exhausting all SFRs the residual noise left

W

in the (nunaltered) signal company. has been bronght to a minimum. This

n
d . . . . . .
N restdual noise cannot be estimated directly sinee we know neither whether
e . .
o nor when a signal may be present. Nevertheless  and this is a success
.' 5 . . -. . . . .
-2 of the adaptive beamforming theory-—it is possible to show that only one
:' sealar relation between the elements of the CSDM is needed to obtain an
V. estimate of the minimized noise above, thus reaching the realm of hyper-
»
Y . . . . o . PN
N resolution systems. Such a relation must be derived from intuition or more
' N reliably bound to a particular situation. For a large matrix thisis a “weak”™
- . . . .
N1 assnmption which does not appear to he too eritical.
9. Stuch an assumption can also he considered as antomatically pertaining
e to “large arravs.” In chapters 3 and 1 a large array ix a one whose size
5,*-: for complexity, or number N1 s faree enough fo surmount the complerity
U of the nimmber of sonrees plius the conplesity of the propagation medim,
}":"' The test of this capacity s derived Drom the examination of the span of
~ ’
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y .. the CSDAL eigenvalues. in every frequency bin. It must be noticed that
! r‘ more sensors lowers the value of the smallest eigenvalue and is liable to
- widen the span of values. It is important for the smallest eigenvalues to be
‘ n much smaller than the largest. We then can consider just neglecting this
R stmallest eigenvalue. which immediately provides the wanted scalar relation
. mentioned above and yields the signal, in principle, rid of noise inasmuch as
s second order statistics are concerned. This “large array condition” remains
. e to be experimentally checked on actual arrays in operational conditions.
Stich a check must done helore stating that the array correctly represents
' :S the medinm and sources, and therefore is an eflicieut array.

<@ On Noise subtraction techniques and noise cancelling techniques are all par-
b ticilar branches of this presentation as is the removal of self-noise from hull-
A mounted arrays. Although one may be enthusiastic about the idea of nearly
s achieving hyper-resolution while dropping all assumptions concerning un-
A - wanted noise, some cantion is in order because the process is very sensitive
_": e too the shape ol the signal wavefront. A small deviation of a signal away
. " from its expected wavelront unpredictably alters the output signal spectral
YRR density, a quantity we had been careful to preserve. Making the process
{ ﬁ mare robust is possible but this incurs a loss in the noise reduction capac-
p ity Bestdes it is impossible to be prepared for all the possible wavefronts
- deseribable in an N-dimeunsional space (a generalization of beamforming).
~ - 1o do so would be both fantastically complex and a true waste, since we

'\ are only considering “large arrays,” with far fewer sources than sensors.
. Finding a way to process signals with nnknown wavefronts forces us
N 1o restore some “weak” assumption- - the weakest possible. We base our
D . a-<tumiption on the observation that a source with an unknown wavefront
< st wervortheless have some “eristing™ wavefront. Whether this condition
. i~ tulfilled i the real world will be decided by experimental studies which

LI determine whether an “interesting” source of the type we might have to
- identify exhibits a rank-one C'SDM regardless of the wavefront. This is,

alome with the eigenvalue span, the corner-stone of spatial processing and its

nltimate ustification. One may expect the corner-stone is firmly attached
YN to reality, especially for arge fixed arrays.
: On the other hand, the plobal CSDM of several “perfect™ sources, each
SIS possessing a wavelront s not by itself suflicient for the separation of several
- ~onpee vectors, One can only sav the vank of this “perfoet sources CSDAT s
) the vamber I of sourecs. Farthermore noise sonrces with a dilfuse structure
{f
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Tl CONCLUSION

{not granted a wavefront) add their own full rank C('SDM to yield the only
accessible matrix. the raw data CSDM. The procedure to he considered is
then a two-step one.

The first step consists in trying to eliminate, as much as possible, the
notse CSDM from the raw data CSDM. To do so we need a reasonabiy
general model of tue notse CSDNL which is made flexible enough through
the use of free parameters (in principle (N F) parametersif I’ is already
chosen). to be fitted to the widest category of situations. Then the free
parameters ave varied to reduce the rank of the difference hetween the raw
data C'SDAI and the noise CSDM from .V to . The remaining dilference
matrix is expected to be the source CSDALL

While the number of P sources might usually he derived from an ex-
amination of the set of cigenvalues i the raw data CSDM. under some
conditions the noise model may be reliable enough (especially for fixed ar-
ravs) to either impose, or at least influence the choice of . In fact the
choice of P cannot be strictly determined precisely hecause we have made
no assumption about the wavefronts, On the other hand, this is not a
critical choice since it is subject to a posteriori verification.

In the second step. P is now known and the second order statisties of
the noise have heen eliminated. What remains is fo disentangle the source
vectors from their (V< ) CSDAL Unfortunately this disentanglement
cannot be done without some additional assumptions becanse there are
an unlimited number of solutions for source vectors directly derived from
the CSDM. These solntions depend on a set of undetermined parameters
corresponding to the degree of freedom of a (P - ') unitary matrix. As
a conseqience we have to impose some “weak™ constraint on the source
vectors, so that the {ree parameters become computable thus allowing a
solution to emerge.

The constraint suggested here is a parametric representation of a sonrce
vector as a coherent sum of a limited number of “conditional plane waves,”
CPW_ which are not exactly plane, but whose geometry is only subject
to a posteriori control while the parametric valine remains constant. The
limited momber of CPW per source veetor and their Qexibility in terms of
physies. seem to justify the claim for the assimption being “weak.”

The constraints on the CPW in this sonree veetor model are chosen in
such a way that the nimber of free sealars on hoth sides exactly match

the number of relations obtaimed when the ~CSDAD derived™ expression is

g!.l_l ,o 0'0.0'*;";"
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confronted with the same source vector. Most of the assumptions about

the source vectors which have been proposed in the literature are far from
this point of balance. and actually impose a specific form onto an already
known experimental CSDNIL

Our notion of CPW seemns to be acceptable as a weak assumption be-
canse in a rich parametric representation, the physical delinition of a given
parameter tends to be blurry without loss of the parametric value. Also,

this might be true for a parametric localization process for the assessment.

of available free parameters in the description of the medium, such as the
one briefly sketched at the end of chapter 4.
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Appendix A

Classical Relation between
Cross-Spectral Densities
Before and After Filtering

e Tollowing well known rule 1s one of the hasie tools of the mathematical
I)r('.\'('n!minn:

By -l |- B

TS .

;

Given two inpit noises By and I, respectively filtered with frequency
responses oy and @, which deliver two output noises BY and BY. we have

csd [BYBY] - esd [ B3] @5 (A1)

where csd denotes cross speetral density and sd spectral density. In the
particidar caxe where f) aad By are the same noise then,

esd [BYBY)] - sd[B,] b, ;. (A.2)

L] = . L B ) LN,
J,‘*,(If-’f}}hl.f-’,lu"l"-fhl .‘ .r.r-r-('-r.*

‘(m"l‘(v " a...l
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: ix of Fi d R d
Matrix of Filters an elate
[ ]

-
= Equations
1:3:
-~ As a rehersal with the CSDM and a matrix of filters let us consider N

origmal notses:

Bl\BQ,---B,,.-..B,",---BN:

with a C'SDAM C whose elements are ¢,,,, (n™ row, m™ column). Let these

clements be processed through a matriz of filters as shown in figure B.1.
s The frequeney response of a filter is g, where:
- . The first subseript vefers to the p'™ output noise Bg which is filtered
- by the p'™ row of filters.

2. The second subscript refers to the n'! input noise B, which feeds all

'_’ the filters of the n'" column of filters.

‘ So the matrix of filters G appears as a matrix is usually written—with
< clements g, in the p!" row and the n*" column. Using the symbol ® for
~] 9 A
) “filtered by we have:
f~_: /;;] (By g4 oo By @ gp) + o (B © g ) 4o (B @ g,n)
' " (8 g b (B g s (B g ) b (B g, )
o Using the rule from appendix AL the cross-spectral density {(csd) hetween
* the two noises is,

- excd [10137)] e
79
o
{.
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INPUT NOISES (CSDM : C)

B1 Bn Bm Bn
Y Y Y { OUTPUT NOISES
| A ¥ ¥ ] » RO
———d === H-————= f————= === 1

i .~
S L 0
—
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— k1 | ¥

— RO
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Figure B.l: Matrix of Linear Filters.,

N N
=~ — .
}__, }_‘ gl”’("'”’g«pn * ( ” I )

.U})r]

nobom -1

which is an element of the output CSDM Y.
Now g.., is the efement 4,,, of the matrix GJf so that y,, can be written
v

\‘ -
Upq .
no1

N

N B oYy (13.2)

v

which is exactly the mathematical expression of the element for a product

of three matrices. Indeed an elemient of H - GCD s

NN

ABIASRIE
[

h " 4/,,,,;. (13.3}
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7 =
. , . 9 : .
- Comparing (B3) with (B2) clearly shows
-.N -_
NI e |
bt Y - GCG'. (B.4)
\ S
Ay The spectral density of BY is
-".l N N }
]
- o sd|B" =
| :J \'._- * » - ./pp
RN N N
v et - ) .
L L gpn(‘nmgp,"- (13))
"\-i‘ .-.'-‘ n=1m=1
- Considering 11 [ gpn with f he r tor g
e onsidering the sequence of g,, with fixed p as the row vector g, the
o L _t
CRTEE sequence of o becomes the column vector gy. Therefore
[l .
v~
2 v = &,CE). (B.6)
A the quadratic form of vector g, (row matrix) through matrix C.
T To follow the convention made in section 3.3, we should represent the

I

set of filters g, by a column vector V = 'g:[ so that y,, = VTCV as in
section 3.1 equation (3.13). and section 3.5.
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Appendix C

Classical Factorization of a
CSDM - Normalized

Eigenvectors

A positive definite. Hermitian matrix like the CSDM C is known to factor

into the product

¢ - URUT, (C.1)
where:

E is the diagonal matrix of the eigenviues, ¢ .ea, ... ¢n.

U is the unitary malrix whose columns are the normalized ecigenvectors of

C: s, ... iy placed in the same order as the ecigenvalues in E.

Because these eigenvectors are normalized and orthogonal to each other:

ﬁpiip = 1,
liIﬁq 00 (p#9q)
U'u I\ the identity matrix.

One may rapidly check that equation (C.1) is the right one when the
columns of U are the cigenvectors. The definition of u, is.

.4‘.. .
Cu, .
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R4 APPENDIX C

If equation (('.1) 1s true we must have
UEG 4, = «,1,. (C1.2)

We check this by multiplying out the left hand side. Beginning with ﬁtiip.
and noticing the rows of fJT are ﬁl, we end up with a column vector v

" whose value is one. Pursuing

th

where all the elements are null except the p

with Ev, we get a column vector with all elements null except the p'™* whose

value is ¢,. Finally in the matrix product

0

0

th

only the elements of the p™ column of U are scaled by the common factor

tp. The result is then ¢,u, as expected from (C.2).
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3 Orthogonal Images of a Set of

L ]
- C lated N
orreiate ol1Sses
e
o
‘.-' . : e —~ y [ 1
= We now know that throngh the matrix of lilters G, the former CSDMN C
.- lins hecome GCGf which may also be written as GUEUJ[GT. If we choose
A to use a matrix of filters G = UJ[. clearly the output matrix bhecomes
4 0'0]E [UTU} - E, (0.1)
& hecanse UTU - Ty is the identity matrix. So we have got a set of nuncor-
Fx‘ . . - ey -
P related noizes with spectral densities ¢, e, .06, .. ¢g..-ex. This is the
physical interpretation of the diagonalization of matrix C. The new inde-
. pendent noises are the “orthogonal images™ of the input noises. The choice
of G U shows that a row of filters in G, is the corresponding row of
-, ihe UT clements, and therefore the compler conjugates of the elements of
- the corresponding column in U. In other words the normalized eigenvector
U. is the column vector which is representative of the set of filters made
L. of the complex conjugates of its elements. We are therefore faithful to the
o) . A . . W)
: convention stated in seetion 3.3,
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Appendix E

Canonical Form of a CSDM

There i another canonical form of matrix C which is of use in chapter 4,
- N

€= Yo il (E.1)
n=l

In brackets is the dyadic product of a normalized eigenvector which forms
an (N - V) matrix. It is casy to check the previous equation, for example
with the cigenvector uy.
N 1'
Cii, Y ¢, (ni,,ii1>.
n=l
where the sealars are hetween parenthesis. Since
Wld - 1 and
iiiﬁl = 0, forn=1,

we end up with
Crll - (,1|Vi].

which is the very definition of 1. The same then holds true for all 1,
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Preliminary *“Theorem” for

o ion 4.6
Y
o Section 4.
.‘ ~
..'.
‘- tow
..- ';‘-
o } B
4 Let as consider P vectors: Voo Ve with 170 N deseribing o trae 1
e dirmensional subspace (no lincar dependence hetween any pair of vectors) of
e T ait N -dimensional vector space. Also consider a diagonal (N - V) mateis
B I isee cquation (111 where the first I diagonal elements are 1oand the
R remaining (N 7)) others are 0. Now recall equation ¢ 1.12) from sceetion
Y ,
. i 1.6,
J .. [‘ . L
I Nyl
t LT, P P
.. pot
;
[ Viso recall the veetors Vo, have two spectfie featnres Fand 2 siven in section
~ P Wiath the components of V], given by T the dinconal o
&N . ; . . LT .
\ croents of the mateix VPV)T_ arey ey ®clepy P The o' diaponal elenment
. ro, . . .
NN of caquation (112005
i r
D . . 9
i S
[.. . Pl
I- "\
K- Comparing, with waterx Hot s elear that il » [the abow e guaating s
SN seros Therefore feature Trany component of any vearor Vs oo when
O - . .
p i 0 Onde the fivst PP components may be nonzero. The ot ol vectors
. Vo odeseribes oo sabspace spanned by the fiest 17 axesin the Vodimensional
' f-: paces Ava consequence: TV 0 V0 This may he secn by pactnmitipivine
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a0 APPENDIY
cquation ((L12) hy Vl.
I p
v, NV, (VIV)).
p:l

In this relation V| appears to be a linear combination of the other vectors
V,. But this is impossible since they have been taken as deseribing a true
P-dimensional subspace. The only way to comply with this equation is to

accept:

r

5,
a3

XA

VTVI = 0 forp # 1.

B

'a A

2

oy

viv, - I

o
%

Vector V| is a normalized vector orthogonal to the others. What is true for

X

Vs trne for any V. Therefore feature 2: the V, are normalized vectors

7('1',;1.'.'1'

N

orthogonal to each other.
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